五种知识图式的绘制方法(思维导图、概念图、知识图谱、语义网络、认知图)

本文详细介绍了五种图表的绘制方法,包括思维导图的中心出发、逐级分支构建;概念图的关键概念确定、层次排序与连接;知识图谱的数据检索、处理与分析;语义网络的对象属性、关系确定与整理;以及认知图的主要概念识别与因果关系模糊化表示。通过这些方法,读者可以更好地理解和创建各种知识表示工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、思维导图的绘制

绘制思维导图的步骤为:
第一步:拿出一张纸或使用软件,从中心开始绘制,周围留出空白。
第二步:画一幅图表达中心内容,或直接用关键词表示。
第三步:将中心图像和主要分支连接起来,然后把主要分支和二级分支连接起来,再把三级分支和二级分支连接起来,以此类推。
第四步:在每条线上使用一个关键词。
第五步:重复以上动作,把想表达的都画出来,一直联想,一直延申。
在这里插入图片描述

二、概念图的绘制

概念图的制作有一定的程序规范,一般有以下几个步骤:
第一步:确定关键概念。从选定的知识领域中,挑选出关键概念,以及与之相关联的其他概念,并把这些概念列出一张“关键概念一览表”,如关于光合作用的关键概念有光、二氧化碳、氧、能量等。这里列出的概念可以“天马行空”式的构想,无需考虑概念的层次、范围、大小,是否相互包含等等。
第二步:概念的排序。关键概念一经确定,便可以将其排列成序。排序的过程是让概念具有层次性的过程,通过排序将概念划分为不同的层级。排序的过程为:把概念性最强、最一般的概念置于顶层,依次向下,概括性较小的概念位于较低的层次,最具体的概念位于最底层,从而形成概念的层次结构。例如,光合作用的概念可分为6个层次。
第三步:进行各级连接。把每一对相关的概念用连线连接,并在连线上标明二者之间“是什么”或有“怎么样”的关系。这样,同一领域或不同领域的知识,通过某一相关概念连接起来,概念图就初步制作完成了。
第四步:反思与完善。对已初步拟制好的概念图加以重新考虑和重新绘制。
在这里插入图片描述

三、知识图谱的绘制

可参考传统科学知识图谱的绘制,主要有八个步骤:
第一步:样本数据检索;
第二步:数据预处理;
第三步:选择知识单元;
第四步:构建单元关系;
第五步:数据标准化;
第六步:数据分析;
第七步:知识可视化;
第八步:图谱解读。
冠状病毒科学知识图谱中“冠状病毒研究中的高被引期刊”见下图:
在这里插入图片描述

四、语义网络的绘制

语义网络的绘制,有如下几个步骤:
第一步:确定问题的所有对象和每个对象的属性;
第二步:确定所讨论对象间的关系;
第三步:根据语义网络中所涉及的关系,对语义网络中的节点及弧进行整理,包括增加节点、弧和归并节点等。
3.1步:在语义网络中,如果节点中的联系是ISA、AKO、AMO等类属关系,则下层节点对上层节点具有属性继承性。整理同一层节点的共同属性,并抽出这些属性,加入上层节点中,以免造成信息冗余。
3.2步: 如果要表示的知识中含有因果关系,则增加情况节点,并从该节点引出多条弧将原因节点和结果节点连接起来。
3.3 步:如果要表示的知识中含有动作关系,则增加动作节点,并从该节点引出多条弧将动作的主体节点和客体节点连接起来。
3.4步: 如果要表示的知识中含有“与”和“或”关系时,可在语义网络中增加“与”节点和“或”节点,并用弧将这些“与”、“或”与其它节点连接起来表示知识中的语义关系。
3.5步: 如果要表示的知识是含有全称量词和存在量词的复杂问题,则采用亨德里克提出的语义网络区分技术来表示。
3.6 步:如果要表示的知识是规则性的知识,则应仔细分析问题中的条件与结论,并将它们作为语义网络中的两个节点,然后用IF-THEN弧将它们连接起来。
第四步:将各对象作为语义网络的一个节点,而各对象间的关系作为网络中各节点的弧,连接形成语义网络。
例子:
把下列命题用一个语义网络表示出来:
1、猪和羊都是动物;
2、猪和羊都是哺乳动物;
3、野猪是猪,但生长在森林中;
4、山羊是羊,头上长着角;
5、绵羊是一种羊,它能生产羊毛。
按以上方法进行语义网络的绘制,语义网络见下图:
在这里插入图片描述

五、认知图的绘制

以认知图中最为典型的模糊认知图为例,讲解绘制方法,主要包括学习绘制和人工绘制两种:
1、学习绘制
利用样本数据通过训练获取系统的模型。
2、人工绘制
利用专家知识和经验建立系统的模糊认知图模型。
第一步:识别问题域中的主要概念,这个概念可以是系统的事件、目标和趋势等;
第二步:确定概念之间有无因果关系,是否存在正因果或负因果;
第三步:将因果影响程度模糊化,可用[-1,1]模糊值表示,也可用自然语言描述,如:弱、很弱、中等、强、很强。
人工绘制的模糊认知图为:
在这里插入图片描述

使用YOLO(You Only Look Once)算法来制作语义地涉及以下几个步骤: 1. 数据收集:收集与语义地构建相关的数据集。数据集可以包括像和对应的标注信息,标注信息包括每个像素的语义类别。 2. 数据准备与预处理:将收集到的像进行预处理,包括缩放、裁剪和归一化等操作。同时,将标注信息转化为语义标签,其中每一个像素点对应一个语义类别。 3. 模型训练:使用YOLO算法进行模型训练。YOLO算法是一个目标检测算法,可以将像中的不同对象进行定位和分类。在语义地的构建中,我们需要将YOLO算法进行修改,使其输出每个像素点的语义类别。 4. 模型调整与优化:对训练过程中的模型进行调整和优化,以提高语义地的准确性和精度。可以通过增加训练数据、调整模型参数、修改网络结构等方式进行优化。 5. 语义地生成:使用训练好的模型,对新的像进行预测,并将预测结果转化为语义地。可以使用一些后处理的方法,如像素融合、填充空洞等操作,来提升语义地的质量。 6. 评估与调整:对生成的语义地进行评估,比较其与标准语义地的差异,并根据评估结果进行模型调整和优化。 综上所述,使用YOLO算法来制作语义地主要涉及数据收集、预处理、模型训练、模型调整和优化、语义地生成以及评估与调整等步骤。这个过程相对复杂,需要数据的准备和模型的训练等一系列步骤,但通过使用YOLO算法,我们可以实现精准和高效的语义地构建。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值