信号处理基础之噪声与降噪(二) | 平滑降噪、SVD降噪及其python代码实现

目录


1 噪声评价指标

        1.1 信噪比

        1.2 波形相似参数

        1.3 均方误差

        1.4 均方根误差

        1.5 python实现代码

2 平滑降噪

        2.1 滑动平均的基本原理

        2.2 SG滤波的基本原理

        2.3 python实现代码

3 SVD降噪

        3.1 SVD降噪的基本原理

        3.2 python代码实现

4 算法测试

        4.1 测试用例

        4.2 降噪结果

        4.3 降噪指标对比

5 参考文献

1 噪声评价指标


1.1 信噪比

        信噪比(Signal-to-noise ratio, SNR),指信号功率与噪声功率的比,也为幅度平方的比,信噪比是衡量降噪程度最直观的量,信噪比越大,信号中包含的噪声越少,降噪效果越明显。对于信号  ,SNR可表示为:

  SNR=\cfrac{P_{signal}}{P_{noise}}=\cfrac{A^2_{signal}}{A^2_{noise}}

        一般地,用分贝对信噪比进行度量,可表示为

  SNR(dB)=10log_{10}(\cfrac{P_{signal}}{P_{noise}})=20log_{10}(\cfrac{A_{signal}}{A_{noise}})

        注:

        ①上述P_{signal}指准备求信噪比的有用信号,有用信号通常指的是纯净信号;

        ②上述P_{noise}指纯噪声,指的是滤波后的信号减去纯净信号,并不是滤波后的信号减去滤波前的信号。

1.2 波形相似参数

        波形相似系数(Normalized Correlation Cofficient, NCC)反映去噪前后信号波形的整体相似度,不能表征波形震荡变化的细节,NCC越接近1,信号之间的相关性越高,其可表示为:

  NCC=\cfrac{\sum_{n=1}^{N}P_{signal}(n)P_{denoised}(n)}{\sqrt{(\sum_{n=1}^NP_{signal}^2(n))(\sum_{n=1}^NP_{denoised}^2(n))}}

1.3 均方误差

        均方误差(Mean-Square Error, MSE)是衡量”平均误差“的较为方便的方法,可以评价数据的变化程度,均方误差可反应去噪前后信号的差异程度,MSE越小,说明降噪效果越好。MSE可表示为:

  MSE=\cfrac{\sum_{n=1}^N|A_{signal}-A_{denoised}|^2}{N}

1.4 均方根误差

        均方根误差(Root Mean Square Error, RMSE)也称方均根偏移,是一种常用的测量数值之间差异的量度,RMES越小,降噪效果越好。RMSE可表示为:

  RMSE=\sqrt{\cfrac{\sum_{n=1}^N(A_{signal}-A_{denoised})^2}{N}}

1.5 python代码实现


import numpy as np
def denoise_evaluate(signal_pure, noise, signal_denoised):
    value = {}    # SNR计算
    p_signal = np.sum(signal_pure**2) / len(signal_pure)    
    p_noise = np.sum(noise**2) / len(noise)    
    SNR = 10 * np.log10(p_signal / p_noise)    
    value['SNR'] = SNR    
    # NCC计算    
    NCC = np.correlate(signal_pure, signal_denoised) / (np.linalg.norm(signal_pure) * np.linalg.norm(signal_denoised))    value['NCC'] = NCC[0]    
    # MSE计算    
    MSE = np.mean((signal_pure - signal_denoised) ** 2)    
    value['MSE'] = MSE    
    # RMSE计算    
    RMSE = np.sqrt(MSE)    
    value['RMSE'] = RMSE    
    return value

        注:上述四个指标的计算均依赖于”纯净信号“,对于只知道真是含噪信号,不知道纯净信号的情况,无法进行计算,即对于工程实际中的随机信号,无法直接用上述四个指标进行衡量。

2 平滑降噪


2.1 滑动平均的基本原理

        滑动平均(Moving Average)是一种时域滤波方法,其基本原理是设定一个滑动窗口,该滑动窗口沿着原始数据时序方向移动,每次移动时计算当前窗口的平均值作为滤波值,最终得到滑动平均序列,其过程可表示为下图。

        记滑动窗口长度为N(N为奇数),则滑动平均可表示为:

  y(n)=\cfrac{1}{N}(x(n-\cfrac{N-1}{2})+\cdots+x(n)+\cdots+x(n+\cfrac{N-1}{2}))=\sum_{k=-\cfrac{N-1}{2}}^{\cfrac{N-1}{2}}x(n+k)

        滑动窗口为对称窗口,防止出现相位偏差,窗口长度一般为奇数。特别地,滑动平均的滤波效果取决于滑动窗的长度,一般长度越大平滑效果越好,但窗口选择过大可能出现过平滑,湮没有效信号,且滑动平均滤波对边缘数据的处理效果不佳。

        注:也可通过卷积的方式实现滑动滤波,此处不展开讨论

2.2 SG滤波基本原理

        SG(Savitzky-Golay)滤波是一种广泛使用的数据平滑滤波降噪方法,其基于曲线局部特征进行多项式拟合,应用最小二乘法确定加权系数进行移动窗口加权平均,重构的数据能够较好保留局部特征,不受时间及空间尺度的影响。SG滤波的基本公式可表示为:

  y_j^*=\cfrac{\sum_{i=-m}^{i=m}C_iY_{j+i}}{N}

        具体地,记滤波窗口长度为 N( N为奇数),测量点记为\bold{\mathit{x}}=(x_1,x_2,\cdots,x_n),采用k-1次多项式对窗口内的数据点进行拟合,记拟合常数为\bold{\mathit{A}}=(a_0,a_1,\cdots,a_{k-1}),则有滤波结果

  y=\bold{\mathit{A}}\cdot[1,\bold{\mathit{x}},\bold{\mathit{x}}^2,\cdots,\bold{\mathit{x}}^{k-1}]^T

        不难发现,在使用SG滤波进行降噪时,窗口长度N,多项式拟合阶次k对降噪结果起着至关重要的作用。窗口长度越长,单次参与拟合的数据量越多,多项式拟合阶次越高,单次拟合的结果越接近原始信号,保留的细节越多,但是过高的阶次可能出现过拟合,产生新的噪声。

        注:限于篇幅,不对完整过程进行推导,详细过程请参考文献[3]。

2.3 python实现

        本文给出了3种方法,常规方法滤波、卷积平滑滤波、SG滤波。

def moving_average(data, window_size):
    # 常规方法进行平滑滤波    
    smoothed_data = []    
    for i in range(len(data)):        
    start = max(0, i - window_size // 2)        
    end = min(len(data), i + window_size // 2 + 1)        
    window = data[start:end]        
    smoothed_data.append(sum(window) / len(window))    
    return smoothed_data
import numpy as np
def moving_average_conv(data, window_size):    
# 卷积平滑滤波    
    window = np.ones(window_size) / window_size    
    smoothed_data = np.convolve(data, window, mode='same')    
    return smoothed_data

import numpy as npfrom scipy 
import signal
def moving_average_sg(data, window_size, order):    
    # SG滤波
    sg_data = signal.savgol_filter(data, window_size, order)    
    return sg_data

3 SVD降噪


3.1 SVD降噪的基本原理

        奇异值分解(Singular Value Decomposition, SVD)能够对矩阵进行分解,得到代表矩阵最本质变化的矩阵元素。作为信号处理的重点研究方向之一,其主要功能是去除信号中的随机噪声,降噪后的信号不存在时间延迟且相移较小。

        记一个含噪声的时间序列y(t)y(t)表示为理想信号x(t)和噪声信号r(t)的和,表示为

  y(t)=x(t)+r(t)

        将y(t)=[y_1,y_2,\cdots,y_N]构造成Hankel矩阵(含噪矩阵A),表示为:

  \bold{\mathit{A}}=\begin{bmatrix}y_1&y_2&\cdots&y_n\\y_2&y_3&\cdots&y_{n+1}\\\vdots&\vdots&\vdots&\vdots\\y_m&y_{m+1}&\cdots&y_{m+n-1}\end{bmatrix}

        式中,当N为偶数时,n=N/2,N为奇数时,n=(N+1)/2N=m+n-1 。

        对含噪矩阵A进行奇异值分解可得:

  \bold{\mathit{A}}=\bold{\mathit{USV^T}}

  \bold{\mathit{S}}=diag(\sigma_1,\sigma_2,\cdots,\sigma_q,\bold{\mathit{O}})\,\,q=min(m,n)

        其中\sigma_i为矩阵A的奇异值,\sigma_1>\sigma_2>\cdots>\sigma_q,O为零矩阵,U、V为正交矩阵。

        选取有效奇异值个数p,保留主对角矩阵S的前p个较大的奇异值,将其余奇异值全部置为0,得到新的对角矩阵:

  \bold{\mathit{S'}}=diag(\sigma_1,\sigma_2,\cdots,\sigma_p,\bold{\mathit{O}})

        于是可以通过左右正交矩阵U和V得到新的信号矩阵A',将重构的矩阵A'恢复成一维信号,此时便完成了SVD降噪处理。

3.2 python实现

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft
from numpy.linalg import svd

def denoised_with_svd(data, nlevel=8):
    """
    :param data: 需要降噪的原始数据,1D-array
    :param nlevel: 阶次
    :return:重构后的信号
    """
    N = len(data)
    A = np.lib.stride_tricks.sliding_window_view(data, (N//2,))
    U, S, Vh = svd(A)

    # 重构信号
    X = np.zeros_like(A)
    for i in range(nlevel):
        X += Vh[i, :] * S[i] * U[:, i:i+1]
    X = X.T
    data_recon = np.zeros(N)
    for i in range(N):
        a = 0
        m = 0
        for j1 in range(N//2):
            for j2 in range(N//2+1):
                if i == j1+j2:
                    a = a + X[j1, j2]  # 把矩阵重构回一维信号
                    m = m + 1
    
        if m != 0:
            data_recon[i] = a / m
    return data_recon

4 算例测试


4.1 测试用例

import matplotlib.pyplot as plt
import matplotlib
# 测试用例
n = 500  # 生成500个点的信号
t = np.linspace(0, 30*np.pi, n, endpoint=False)
s = np.cos(0.1*np.pi*t) + np.sin(0.3*np.pi*t) + np.cos(0.5*np.pi*t) + np.sin(0.7*np.pi*t)  # 原始信号
r = np.random.randn(n)
y = s + r  # 加噪声
data_smooth_avg = moving_average(y, 5)
data_smooth_conv = moving_average_conv(y, 5)
data_smooth_sg = moving_average_sg(y, 5, 3)
data_svd = denoised_with_svd(y)
fig = plt.figure(figsize=(16, 9))
plt.subplots_adjust(hspace=0.5)
font = {'family': 'Times New Roman', 'size': 16, 'weight': 'normal',}
matplotlib.rc('font', **font)
plt.subplot(6, 1, 1)
plt.plot(s, linewidth=1.5, color='b')
plt.title('原始模拟信号', fontname='microsoft yahei', fontsize=16)
plt.subplot(6, 1, 2)
plt.plot(y, linewidth=1.5, color='r')
plt.title('原始模拟信号+高斯噪声', fontname='microsoft yahei', fontsize=16)
plt.subplot(6, 1, 3)
plt.plot(data_smooth, linewidth=1.5, color='g')
plt.title('降噪信号-均值法', fontname='microsoft yahei', fontsize=16)
plt.subplot(6, 1, 4)
plt.plot(data_smooth, linewidth=1.5, color='g')
plt.title('降噪信号-卷积法', fontname='microsoft yahei', fontsize=16)
plt.subplot(6, 1, 5)
plt.plot(data_smooth, linewidth=1.5, color='g')
plt.title('降噪信号-SG滤波', fontname='microsoft yahei', fontsize=16)
plt.subplot(6, 1, 6)
plt.plot(data_svd, linewidth=1.5, color='g')
plt.title('降噪信号-SVD', fontname='microsoft yahei', fontsize=16)

4.2 降噪结果

4.3 降噪指标对比

5 参考文献

[1]https://zhuanlan.zhihu.com/p/558808890

[2]https://zhuanlan.zhihu.com/p/579187348

[3]https://blog.csdn.net/weixin_36815313/article/details/121238628

[4]刘子涵. 噪声背景下基于时频分析的滚动轴承微弱故障诊断方法研究[D]. 河北:燕山大学,2021.

更多内容,请关注公众号 故障诊断与python学习

  • 43
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值