马尔科夫随机场:定义、性质,最大后验概率问题,能量最小化问题

马尔可夫随机场

马尔可夫随机场又称马尔可夫网络(Markov random field (MRF), Markov network or undirected graphical model)是具有马尔可夫属性的随机变量的集合,它由一个无向图来描述。
在这里插入图片描述上图就是马尔可夫随机场的例子,边代表依赖关系。上图中,A依赖于B、D,C依赖于E,以此类推。

定义

对给定无向图 G = ( V , E ) G=(V, E) G=(V,E)和一个由V索引的随机变量的集合 X = ( X v ) v ∈ V X=\left(X_{v}\right)_{v \in V} X=(Xv)vV,如果他们满足局部马尔可夫性质,就说X是关于G的马尔可夫随机场。

前置知识:条件独立

在这里插入图片描述
用上图的例子说明条件独立:赖床和起得晚互相有依赖,起得晚和迟到互相有依赖,但是如果提前知道起得晚的概率,赖床和起得晚就互相条件独立了。

马尔可夫的三个性质

在这里插入图片描述

  1. 成对马尔可夫性质 Pairwise Markov property:给定所有其他变量,任何两个不相邻的变量是条件独立的。(比如知道了其他三个变量,赖床和迟到相互独立。)
    X u ⊥ X v ∣ X V \ { u , v } X_{u} \perp X_{v} \mid X_{V \backslash\{u, v\}} XuXvXV\{ u,v}
  2. 局部马尔可夫性质 Local Markov property:给定一个变量的所有邻接变量,该变量条件独立于所有其他变量(下式中, N ( v ) N(v) N(v)是v的邻接集合)。(比如知道了起得晚和精神不振变量,赖床和迟到、挨骂相互独立。)
    X v ⊥ X V \ N [ v ] ∣ X N ( v ) X_{v} \perp X_{V \backslash \mathrm{N}[v]} \mid X_{\mathrm{N}(v)} XvXV\N[v]XN(v)
  3. 全局马尔可夫性质:给定一个分离的子集,任何两个随机变量的子集都是条件独立的(下式中,任何由A集合的结点到B集合的结点的路径都要经过S内的结点)。(给定迟到,赖床、起得晚、精神不振这个集合内的变量和挨骂这个集合变量相互独立。)
    X A ⊥ X B ∣ X S X_{A} \perp X_{B} \mid X_{S} XAXBXS

上述公式中, ⊥ \perp 代表相互独立, ∣ \mid 代表条件, \ \backslash \代表差集。

马尔可夫三个性质的关系

全局 > \gt >局部 > \gt >成对,然而上述的三个性质对于正分布来说是等价的(即非0概率分配)。

这三条性质的关系用下面的公式更好理解:

  • Pairwise 成对:对任意不相等或不相邻的 i , j ∈ V i, j\in V i,jV,有 X i ⊥ X j ∣ X V \ { i , j } X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}} XiXj
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值