数学学习极限

学三小时数学吧22:33
这只是我笔记啊,有人看不要怪我排版不好。

x 2 − x − 6 + arcsin ⁡ 2 x − 1 7 的 定 义 域 \sqrt{x^2-x-6}+ \arcsin\frac{2x- 1}{7} 的定义域 x2x6 +arcsin72x1

a r c s i n x 定 义 域 [ − 1 , 1 ] , 2 x − 1 7 arcsinx定义域[-1,1], \frac{2x-1}{7} arcsinx[11]72x1

− 3 < x < 4 -3<x<4 3<x<4
x > = 3 x>=3 x>=3
解得:
− 3 < = x < = − 2 -3<= x<=-2 3<=x<=2
x > = 4 > = 3 x>=4>=3 x>=4>=3

知识点 x \sqrt{x} x 的定义域 arcsin ⁡ x \arcsin x arcsinx的定义域

第二题
例2: f ( x ) = x 1 + x 求 f ( f [ f ( x ) ] ) f(x) = \frac {x}{1+x} 求 f( f[ f(x)] ) f(x)=1+xxf(f[f(x)])
思路就是纯粹的代入法:
f ( x ) = x 1 + 3 x f(x) = \frac {x} {1+3x} f(x)=1+3xx

学习就是让火焰燃烧自己

arcsinx的 定义域是什么这个问题 一问你就要知道

例三

又是代入法求极限:
{ f ( x ) = x ∣ x ∣ > 1 f ( x ) = x 2 ∣ x ∣ < = 1 { g ( x ) = e x ∣ x ∣ > 1 g ( x ) = 1 + x ∣ x ∣ < = 1 求 g ( f ( x ) ) 的 表 达 式 \begin{cases} {f(x) = x \quad |x| >1 } \\ {f(x) = x^2 \quad |x| <= 1 } \end{cases} \begin{cases} {g(x) = e^x \quad |x| > 1 } \\ {g(x) = 1+x \quad |x| <= 1 } \end{cases} \\ 求g(f(x))的表达式 {f(x)=xx>1f(x)=x2x<=1{g(x)=exx>1g(x)=1+xx<=1gf(x)

解 : f ( x ) = { e x , ∣ x ∣ > 1 1 + x 2 , ∣ x ∣ < = 1 解:\\ f(x) = \begin{cases} {e^x, \quad |x| >1}\\ {1+x^2, \quad |x| <= 1} \end{cases} f(x)={ex,x>11+x2,x<=1
教科书上的题目还需要将 方程展开 绝对值

第四题
f ( x ) = { e x , x < 1 x + 1 , x > = 1 g ( x ) = { x 2 , x < 0 2 x + 1 , x > = 0 求 f [ g ( x ) ] . f(x) = \begin{cases} {e^x,\quad x<1}\\{x+1,\quad x>= 1}\end{cases} \quad \quad \\ \quad \quad \quad \\ g(x) = \begin{cases} {x^2 ,\quad x<0}\\{2x+1,\quad x>= 0}\end{cases} 求f[g(x)]. f(x)={ex,x<1x+1,x>=1g(x)={x2,x<02x+1,x>=0f[g(x)].

我 靠 被 绕 晕 了 我靠被绕晕了
5
5. y = l n ( x + 1 + x 2 ) 的 反 函 数 5. \quad \quad y = ln(x+\sqrt {1+x^2}) 的反函数 5.y=ln(x+1+x2 )
如 何 求 反 函 数 忘 记 了 如何求反函数 \quad \quad 忘记了
e y = x + 1 + x 2 e^y = x+\sqrt{1+x^2} ey=x+1+x2
( x + 1 + x 2 ) ( x − 1 + x 2 ) = − 1 (x+\sqrt{1+x^2})(x-\sqrt{1+x^2}) = -1 (x+1+x2 )(x1+x2 )=1
( x + 1 + x 2 ) + ( x − 1 + x 2 ) = 2 x (x+\sqrt{1+x^2} ) + (x-\sqrt{1+x^2}) = 2x (x+1+x2 )+(x1+x2 )=2x
x = ( x + 1 + x 2 ) + ( x − 1 + x 2 ) 2 x =\frac {(x+\sqrt{1+x^2} ) + (x-\sqrt{1+x^2}) }{2} x=2(x+1+x2 )+(x1+x2 )
e − y = 1 + x 2 − x e^{-y} = \sqrt {1+x^2} - x ey=1+x2 x
解 得 : x = e y − e − y 2 解得 : \quad x = \frac {e^y - e^{-y}}{2} x=2eyey

6

lim ⁡ x → 0 s i n 1 x 是 否 存 在 \lim_{x \to 0} sin\frac{1}{x}是否存在 x0limsinx1

定 理 一 极 限 如 果 存 在 必 唯 一 定理一 极限如果存在必唯一
定 理 4 如 果 极 限 存 在 , 则 其 任 意 子 列 极 限 也 存 在 并 且 等 − > 推 论 lim ⁡ x → 0 a n 存 在 的 充 分 必 要 条 件 是 lim ⁡ n → 0 a 2 n − 1 lim ⁡ n → 0 a 2 n 都 存 在 且 相 等 定理4 如果极限存在,则其任意子列极限也存在并且等 \\ ->推论 \lim_{x \to 0 }a_n 存在的充分必要条件是 \\ \lim_{n \to 0} a_{2n-1} \quad \lim_{ n\to0 }a_{2n} 都存在且相等 4>x0limann0lima2n1n0lima2n
函 数 极 限 就 转 换 成 一 个 数 列 极 限 了 , 通 过 往 一 个 方 向 顺 序 取 值 ∗ ∗ 往 往 是 按 照 一 个 函 数 来 取 ∗ ∗ 函数极限就转换成一个数列极限了,\\通过往一个方向顺序取值\\ **往往是按照一个函数来取**
子 列 子列

回 忆 一 下 s i n x 的 几 个 特 殊 值 s i n 2 π = 0 s i n π / 2 = 1 s i n 具 有 周 期 性 就 是 随 便 + 2 π 还 是 原 来 的 值 我 们 可 以 得 到 一 个 数 列 它 的 ( 每 一 项 ) 在 s i n x 函 数 对 应 的 值 都 是 一 样 的 s i n ( 2 n x ) ( n = 1 , 2... ) = = = 0 ; s i n ( 2 n π + π / 2 ) ( n = 1 , 2... ) = = = 0 ; 回忆一下 sinx 的 几个特殊值 sin 2π = 0 sinπ/2 = 1 \\sin具有周期性\\就是随便+2π 还是原来的值\\ \\我们可以得到一个数列它的(每一项)在sinx函数对应的值都是一样的\\ sin(2nx)(n = 1,2...) === 0;\\sin (2nπ + π/2)(n = 1,2... ) === 0 ; sinxsin2π=0sinπ/2=1sin便+2π()sinxsin2nx(n=1,2...)===0sin2nπ+π/2(n=1,2...)===0
取 子 列 典 型 通 过 取 子 列 我 们 可 以 讲 一 个 函 数 极 限 转 换 成 数 列 极 限 取子列典型 通过取子列 \\ 我们可以讲一个函数极限转换成数列极限
x → 0 通 过 取 子 列 x n → 0 y n → 0 x n 代 表 某 个 数 列 y n 代 表 某 个 数 列 1 2 n π + 1 / 2 π x \to 0 \\ 通过 取子列 \\x_n \to 0 y_n \to 0 \\ xn代表某个数列 \\ yn代表某个数列 \frac{1}{2nπ + 1/2π} x0xn0yn0xnyn2nπ+1/2π1
x n = 1 2 n π n 取 1 , 2 , 3..... 显 然 x n → 0 ( n → ∞ ) 为 x → 0 的 一 个 子 列 lim ⁡ n → ∞ s i n 1 x n = = lim ⁡ n → ∞ s i n 2 n π = = = 0 x_n = \frac{1}{2nπ} n取{1,2,3.....}\\ 显然 x_n \to 0(n \to \infty) 为x \to 0的一个子列 \\ \lim_{n\to \infty } sin\frac{1}{x_n} == \lim_{n\to\infty} sin 2nπ == = 0 xn=2nπ1n1,2,3.....xn0(n)x0nlimsinxn1==nlimsin2nπ===0
取 y n = 1 2 n π + 1 / 2 π n = ( 1 , 2 , . . . ) 显 然 y n → n 是 x → 0 的 又 一 个 子 列 lim ⁡ y n → ∞ s i n 1 y n = 1 所 以 极 限 不 存 在 取 y_n = \frac{1}{2nπ +1/2 π } n=(1,2,...) \\显然y_n \to n 是 \\x \to 0的又一个子列\\ \lim_{y_n \to \infty} sin\frac{1}{yn} = 1 \\ 所以极限不存在 yn=2nπ+1/2π1n=(1,2,...)ynnx0ynlimsinyn1=1

回 到 我 们 的 定 理 回到我们的定理
如 果 极 限 存 在 那 么 其 的 任 意 子 列 极 限 也 存 在 且 相 等 我 们 使 用 这 条 定 理 将 一 个 函 数 极 限 = = 数 列 极 限 , 取 出 的 它 的 子 列 , 发 现 不 相 等 如果极限存在\\ 那么其的任意子列极限也存在\\且相等 我们使用这条定理将一个函数极限 == 数列极限 ,取出的它的子列,发现不相等 使==

大 概 是 由 于 一 个 叫 作 归 结 定 理 的 东 西 数 列 极 限 可 以 变 成 函 数 极 限 洛 必 达 求 导 对 于 数 列 来 说 是 没 有 意 义 的 是 数 列 可 以 看 作 是 函 数 极 限 的 子 列 留 心 一 个 叫 做 海 涅 定 理 的 东 西 不 明 所 以 不 做 例 会 大概是由于一个叫作\\归结定理的东西 数列极限可以变成函数极限 洛必达 \\ 求导对于数列来说是没有意义的\\ 是数列可以看作是函数极限的子列 \\留心一个叫做海涅定理的东西\\不明所以 不做例会 西西

lim ⁡ n → ∞ n ( π 2 − a r c t a n n ) 求 极 限 解 a r c t a n + ∞ = = π / 2 a r c t a n − ∞ = = − π / 2 如 何 利 用 列 和 子 列 的 关 系 呢 ? 首 先 他 本 身 是 一 个 数 列 极 限 我 们 可 以 将 它 转 化 成 一 个 函 数 极 限 如 果 函 数 极 限 有 确 定 的 值 那 么 它 的 子 列 任 意 数 列 极 限 的 值 一 定 与 它 相 等 转 换 成 函 数 极 限 0 / 0 型 函 数 使 用 洛 必 达 法 则 注 意 洛 必 达 法 则 使 用 条 件 a r c t a n x 求 导 是 多 少 1 1 + x 2 数 列 的 项 数 一 定 是 非 负 整 数 \lim_{ n \to \infty }n(\frac{π}{2} -arctann) 求极限 \\ 解\\arctan +\infty == π/2\\ arctan -\infty == -π/2 \\如何利用列和子列的关系呢? \\首先他本身是一个数列极限\\我们可以将它转化成一个函数极限\\如果函数极限有确定的值\\那么它的子列\\任意 数列极限的值一定与它相等\\转换成函数极限\\0/0型函数\\使用洛必达法则\\注意洛必达法则使用条件\\arctanx求导是多少\\\frac{1}{1+x^2}\\数列的项数一定是非负整数 nlimn(2πarctann)arctan+==π/2arctan==π/20/0使使arctanx1+x21

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值