人工智能导论——智能计算(进化算法+群智能优化)

在这里插入图片描述

前言

CSDN好迷啊,前一段时间的粘贴图片自动居中已经取消了,现在还得手动居中QAQ。不过冲就完事了。
PS:此章节的考察内容比较迷惑,记得在网上找些习题帮助复习!
在这里插入图片描述
“你可以吗!”
“可以”
冲鸭!

0. 智能计算概述

进化算法与群智能算法是智能优化方法的两大类,下面这张图整挺好。
在这里插入图片描述
其中,我们所熟知的遗传、模拟退火、人工神经忘了都属于进化算法;蚁群、粒子群算法则属于群智能算法。

进化算法:主要通过选择重组变异(模拟生物进化过程)实现优化问题的求解。
群智能算法:受动物群体智能启发的算法

1. 遗传算法(GA)

GA:求解问题时,从多个解开始,通过一定的法则迭代产生新的解。

遗传算法要经过如下步骤:

编码
群体设定
适应度函数
选择
交叉
变异
满足终止条件输出

遗传算法具有如下优点

  • 没有太多数学要求
  • 高效率搜索
  • 易于并行
  • 个体间进行信息交换

人工生命:具有生命特征的人造系统。

2. 粒子群优化算法

粒子群优化算法流程如下:

初始化粒子群设置参数
计算粒子适应度
个体最优群体最优
状态更新
是否满足条件
输出

3. 蚁群算法

蚁群算法在解决离散组合优化方面具有良好性能。在学习之前,需要掌握如下概念:

  • 信息素跟踪:按照一定概率沿着信息素较强的路径觅食
  • 信息素遗留:在走过的路上释放信息素。
  • 信息素启发因子α:反映蚁群在路径搜索中随机性因素作用强度。α过大可能陷入局部最优。
  • 期望值启发式因子β:反映先验性、确定性因素作用强度。搜索速度加快,过大陷入局部最优

根据蚁群信息素浓度的更新规则,可分为三种不同的模型:

  1. 蚂蚁圈系统:利用全局信息,蚂蚁完成一个循环后,更新所有路径上信息。效果最好
  2. 蚂蚁数量系统:利用局部信息,蚂蚁每走一步都更新
  3. 蚂蚁密度系统:同上

4. 问题解析

  • 问题1
    在这里插入图片描述

错,当适应度函数选择不当时,遗传算法确实可能陷入局部最优值,但遗传算法个体之间可以共享信息,不容易陷入局部最优值。相应的,如果粒子群间没有共享信息,就容易陷入局部最优解。

  • 问题2
    遗传算法结束条件:

计算结构收敛到最优解或者算法达到了规定的迭代次数。

  • 问题3
    什么时候适用进化算法?

对于问题的解决没有现成算法或现成算法复杂度太高时,使用进化算法。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页