水下图像增强算法研究

基于深度学习的图像增强

今天问了一个做图像增强方向的研究生学长,他说水下图像增强比较特殊,是少数非深度学习方法效果好于深度学习方法的方向。主要是因为数据集的缺少,没有合理的ground truth作为监督。
同时,也了解到去年学长参与过一个水下图像增强的比赛,深度学习的效果并不好。因此,不用局限于深度学习的方法,可以去找一下论文和github。
So,开始了今天的查阅资料。

水下图像增强综述

水下图像增强技术的目的是实现水下图像的清晰化,那么水下图像会遇到什么问题呢?下面选取了两张水下的图像进行说明。

  1. 色偏问题

在这里插入图片描述
明显可以观察到,该水下图像呈绿色色偏,这是由于水对光纤产生吸收与散射造成的。除了绿色色偏之外,也会产生蓝色色偏。

  • 对比度低
    在这里插入图片描述
    该图像为未产生色偏时的水下拍摄图像,存在对比度较低的问题。

研究水下图像增强技术有三种路径:

  • 传统图像增强技术,如直方图均衡化(效果不佳)
  • 基于颜色恒常理论的方法(Retinex)
  • 基于按通道优先(DCP)算法及其改进算法

Retinex算法

Retinex算法适用于照度不均匀以及亮度较暗的水下图形处理。

理论:该算法认为物体的颜色由物体本身对不同的波长光线反射的结果,颜色不会受光照不均匀的影响。
方法:通过将图像分为辐射照度和反射照度,重新调整图像的辐射照度实现亮度矫正处理。
缺点:图像严重失真,且放大了图中的噪声。

DCP算法

DCP算法最初用于户外场景的去雾处理。

理论:该算法认为一个物体在自然环境中的亮度至少在一个颜色成分中很小。
方法:将图像各通道的最小值组成的图像称为暗通道图像。若图像中存在雾,则其在各个通道的值都比较高,通过暗通道图像中的灰白程度估计雾的浓度,以此进行去雾处理。

处理效果如下所示:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
可见直接将DCP算法应用于水下图像增强效果并不好。

基于图像分析的偏色校正方法(2008年)

该算法应该来源于2008年的一篇同名论文,12年后却是我目前图像增强效果比较好的算法之一。
先上效果:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
该算法是针对图片偏色问题的解决算法,因此相比上述几个适用于低光照等因素的算法效果较好,不过除此之外,该算法仍不失为颜色校正的普适算法。
该算法可分为偏色检测和颜色校正两部分。
该算法定义了一个基于等效圆的偏色检测方法,采用图像平均色度和色度中心距的比值作为偏色因子来衡量图像的偏色程度。
颜色校正方法则综合了灰度世界颜色校正和完美反射颜色校正,利用图像本身的特征进行分析,具有普适性。

接下来的实验

由于对于色偏的处理已经取得不错的结果,接下来拟学习一些算法,提高图像的清晰度和对比度,进一步提升视觉效果。
博主还处于对水下图像增强的初步学习阶段,欢迎各位大佬给出更多建议!

参考博客

该博客参考了以下资料,仅用于学习交流,如有侵权行为,请联系我!

paper survey之——水下图像复原与增强&水下光通信
基于图像分析的偏色检测及颜色校正方法

<think>好的,用户想查找关于深度学习在水下图像增强方面的文献综述。首先,我需要回忆相关的引用内容。根据用户提供的引用,引用[1]提到了水下图像增强方法的研究综述,并包含了一个水下成像原理的示意图。引用[3]则讨论了在水下图像增强中使用Transformer模型的情况,指出这方面的论文还不算多,建议往这个方向靠。 接下来,我需要确定如何结合这些信息来回答用户的问题。用户明确提到了“深度学习 水下 图像增强 文献综述”,所以需要将深度学习和文献综述结合起来。引用[1]是综述,但可能主要涵盖传统方法,而引用[3]提到深度学习的应用,特别是Transformer,但需要确认是否属于文献综述的一部分。 可能需要指出引用[1]作为基础综述,同时引用[3]提供深度学习的趋势,特别是Transformer的应用。此外,用户可能需要更多的资源或建议,比如推荐具体的数据库或搜索策略,但根据现有引用,只能基于提供的材料。 还要注意用户提到的文献综述是否包括最新的深度学习进展。引用[3]提到2020年第一篇Transformer用于水下图像增强,说明这方面的研究较新,可能文献综述较少,但用户需要的就是这样的综述,所以需要建议查找近年来的综述论文,并参考引用[1]和引用[3]中的方向。 另外,引用[3]还提到非物理模型和物理模型的区别,这可能帮助用户缩小搜索范围,比如建议关注非物理模型或深度学习的组合方法。同时,可能需要指出在哪些数据库或会议中查找,比如IEEE Xplore、Springer等,但用户没有提供这些引用,所以只能基于现有内容。 最后,生成相关问题需要考虑用户可能进一步的需求,比如方法比较、挑战、最新技术趋势等,确保问题具有引导性,帮助用户深入探索。</think>根据您的需求,推荐以下文献检索策略和关键研究方向: 1. **核心文献定位** 引用[1]《水下图像增强方法研究综述》是基础性综述文献,包含水下成像物理模型分析(如光衰减、颜色失真机理)和传统算法框架[^1]。建议优先阅读该文献的深度学习章节,并追踪其参考文献中标注"deep learning"的论文。 2. **新兴技术聚焦** 引用[3]指出Transformer模型是当前研究热点,2020年首次应用于水下场景的U型Transformer架构具有里程碑意义。可通过Web of Science设置检索式: $$ TS=("underwater image enhancement" AND ("deep learning" OR transformer)) $$ 时间范围设定2020-2024年,可快速定位最新进展[^3]。 3. **技术路线选择** - **高影响力论文**:优先考虑结合物理模型与神经网络的混合方法,如UIE-Net等架构 - **快速发表路径**:采用非物理模型的模块组合方法,例如将注意力机制与GAN网络结合
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值