基于深度学习的图像增强
今天问了一个做图像增强方向的研究生学长,他说水下图像增强比较特殊,是少数非深度学习方法效果好于深度学习方法的方向。主要是因为数据集的缺少,没有合理的ground truth作为监督。
同时,也了解到去年学长参与过一个水下图像增强的比赛,深度学习的效果并不好。因此,不用局限于深度学习的方法,可以去找一下论文和github。
So,开始了今天的查阅资料。
水下图像增强综述
水下图像增强技术的目的是实现水下图像的清晰化,那么水下图像会遇到什么问题呢?下面选取了两张水下的图像进行说明。
- 色偏问题

明显可以观察到,该水下图像呈绿色色偏,这是由于水对光纤产生吸收与散射造成的。除了绿色色偏之外,也会产生蓝色色偏。
- 对比度低

该图像为未产生色偏时的水下拍摄图像,存在对比度较低的问题。
研究水下图像增强技术有三种路径:
- 传统图像增强技术,如直方图均衡化(效果不佳)
- 基于颜色恒常理论的方法(Retinex)
- 基于按通道优先(DCP)算法及其改进算法
Retinex算法
Retinex算法适用于照度不均匀以及亮度较暗的水下图形处理。
理论:该算法认为物体的颜色由物体本身对不同的波长光线反射的结果,颜色不会受光照不均匀的影响。
方法:通过将图像分为辐射照度和反射照度,重新调整图像的辐射照度实现亮度矫正处理。
缺点:图像严重失真,且放大了图中的噪声。
DCP算法
DCP算法最初用于户外场景的去雾处理。
理论:该算法认为一个物体在自然环境中的亮度至少在一个颜色成分中很小。
方法:将图像各通道的最小值组成的图像称为暗通道图像。若图像中存在雾,则其在各个通道的值都比较高,通过暗通道图像中的灰白程度估计雾的浓度,以此进行去雾处理。
处理效果如下所示:




可见直接将DCP算法应用于水下图像增强效果并不好。
基于图像分析的偏色校正方法(2008年)
该算法应该来源于2008年的一篇同名论文,12年后却是我目前图像增强效果比较好的算法之一。
先上效果:




该算法是针对图片偏色问题的解决算法,因此相比上述几个适用于低光照等因素的算法效果较好,不过除此之外,该算法仍不失为颜色校正的普适算法。
该算法可分为偏色检测和颜色校正两部分。
该算法定义了一个基于等效圆的偏色检测方法,采用图像平均色度和色度中心距的比值作为偏色因子来衡量图像的偏色程度。
颜色校正方法则综合了灰度世界颜色校正和完美反射颜色校正,利用图像本身的特征进行分析,具有普适性。
接下来的实验
由于对于色偏的处理已经取得不错的结果,接下来拟学习一些算法,提高图像的清晰度和对比度,进一步提升视觉效果。
博主还处于对水下图像增强的初步学习阶段,欢迎各位大佬给出更多建议!
参考博客
该博客参考了以下资料,仅用于学习交流,如有侵权行为,请联系我!
1523

被折叠的 条评论
为什么被折叠?



