mlp_classification

import keras
from keras import Sequential
from keras.layers import Dense, Dropout
from keras import backend
import numpy as np
from matplotlib import pyplot as plt
from keras.utils import to_categorical

np.seterr(divide='ignore', invalid='ignore')
gas = np.loadtxt('feature_result.txt')
# gas = all_data[np.where(all_data[:, 0] == 4)]
# np.savetxt('gas.txt', gas, fmt='%.5f'),目的是找出4号气体的浓度和所有数据
np.random.seed(133)
np.random.shuffle(gas)
gas_max_min = gas[:, 0:15]

# # z-score方法
# gas_mean = np.mean(gas_z_score, axis=0)
# gas_std = np.std(gas_z_score, axis=0)
# gas_new = (gas_z_score - gas_mean) / gas_std

from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
gas_new = min_max_scaler.fit_transform(gas_max_min)

gas_train_attr = gas_new[:int(gas_new.shape[0] * 0.75)]
gas_train_label_origin = gas[:int(gas.shape[0] * 0.75), 15].reshape(-1, 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值