Keras

Keras本身没有运算能力,它在TensorFlow、CNTK、Theano等深度学习开源套件上执行,将这些深度学习套件封装为更容易使用的指令。TensorFlow2.0将Keras收纳为内建的高级API,直接通过tf.keras指令即可调用。

一、两种常用的网络搭建方法

(1)Sequential Model(序贯模型)。
(2) Functional API(函数式模型,或称为函数式API)。

接下来的范例会使用以下几种网络层,先简略介绍,重点在于明白使用Keras搭建网络架构的方便性与灵活性。

(1)Dense:搭建全连接层的指令。
(2)Conv2d:搭建卷积层的指令。
(3)Flatten:将输入压平,重塑(Reshape)成一维张量,大多用于卷积层与全连接层之间
(4)Add:将两个层的输出加在一起
(5)Concatenate:将两个层的输出以指定的维度进行拼接(Concat),这种方法与Add万法相比保留了更多信息量,但计算量较大。

二、序贯模型(Sequential Model)

序贯模型(Sequential Model)的搭建方法简单快速,基本上只要是回归问题或分类问题,就可以用序贯模型解决。但是,序贯模型的搭建方法有限制,必须逐层按序搭建网络,而且网络模型必须为单个输入层和单个输出层。图2-9所示为Single Inout and Output Model(单输入输出模型)。

以分类问题为例:输入为28×28的图像并压平为784的一维向量,输出为10个元素的一维向量(分为10个类别),中间使用两个隐藏层,各拥有64个神经元,而隐藏层的激活函数为ReLU,输出层为Softmax。

1、导入必要的套件

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.utils import plot_model
from IPython.display import Image

2、建立模型

方法一

# 建立一个序贯模型
model = keras.Sequential(name='Sequential')
# 每次model.add会增加一层网络到模型中,第一层需要定义输入尺寸(input_shape)
# 第一个数值表示输出个数,即该层神经元的个数
model.add(layers.Dense(64, activation='relu', input_shape=(784,)))
model.add(layers.Dense(64, activation='relu'))
# 最后一层会被当作模型的输出层
model.add(layers.Dense(10,activation='softmax'))
# 产生网络拓扑图
plot_model(model,to_file='Functional_API_Sequential_Model.png')
# 显示网络拓扑图
Image('Functional_API_Sequential_Model.png')

 方法二

# 可以将所有网络层放到一个列表list中,并作为tf.keras.Sequential的参数
# 而这个列表同样有顺序性,第一个需要定义输入大小,最后一个为输出层
model = tf.keras.Sequential([
    layers.Dense(64,activation='relu',input_shape=(784,)),
    layers.Dense(64,activation='relu'),
    layers.Dense(10,activation='softmax')])
# 产生网络拓扑图
plot_model(model,to_file='Functional_API_Sequential_Model.png')
# 显示网络拓扑图
Image('Functional_API_Sequential_Model.png')

 三、函数式模型(Functional ADI)

Keras中的 Functional ADI提供了更多的灵活性,能够建立更复杂的模型。例如多输入单输出模型、单输入多输出模型和多输入多输出模型等,如图2-11所示。

Functional API在使用上非堂灵活,下面介绍几种高级应用。

(1) 物体检测(Object Detection)。
(2) 图像分割 (Image Segmentation)。
(3) 生成式对抗网络(Generative Adversarial Network)。

下面将按序介绍几种网络架构以及应用的场景。

(1) Single Input and Output Model:单输入单输出模型。
(2) Multi Input Model:多输入单输出模型。
(3) Multi Output Model:单输入多输出模型。
(4) Multi Input and Output Model:多输入多输出模型。

1、Single Input and Output Model

单输入单输出模型,例如输入为28×28的图像并压平为784 的一维向量,输出为10个元素的一维向量(分为10个类别),中间使用两个隐藏层,各拥有64个神经元,而隐藏层的激活函数为 ReLU,输出层为Softmax。

# 不同于序贯模型和Functional API需要建立输入层
inputs = keras.Input(shape=(784,),name='input')
h1 = layers.Dense(64,activation='relu',name='hidden1')(inputs)
h2 = layers.Dense(64,activation='relu',name='hidden2')(h1)
outputs = layers.Dense(10,activation='softmax',name='output')(h2)

# 这个keras.Model会自动将输入层到输出层所有经过的各层连接起来建立成网络
model = keras.Model(inputs=inputs, outputs=outputs)

plot_model(model,to_file='Functional_API_Single_Input_And_Output_Model.png')
Image('Functional_API_Single_Input_And_Output_Model.png')

 2、Multi Input Model

多输入单输出模型,例如商品价格预测为两个输入(商品图片和商品品牌)和一个输出(价格预测),商品图片(128,128,3)输入经过3个隐藏层,商品品牌(1,)输入经过一个隐藏层,结合两个信息后再经过一个隐藏层,而输出为价格预测(1,)。

# 网络模型输入层
img_input = keras.Input(shape=(128,128,3),name='Image_Input')
info_input = keras.Input(shape=(1,),name='Information_Input')

# 网络模型隐藏层
h1_1 = layers.Conv2D(64,5,strides=2,activation='relu',name='hidden1_1')(img_input)
h1_2 = layers.Conv2D(32,5,strides=2,activation='relu',name='hidden1_2')(h1_1)
h1_2_ft = layers.Flatten()(h1_2)
h1_3 = layers.Dense(64,activation='relu',name='hidden1_3')(info_input)
concat = layers.Concatenate()([h1_2_ft,h1_3])
h2 = layers.Dense(64,activation='relu',name='hidden2')(concat)

# 网络模型输出层
outputs = layers.Dense(1,name='Output')(h2)

# 建立网络模型
model = keras.Model(inputs=[img_input,info_input],outputs=outputs)

# 显示网络模型架构
plot_model(model,to_file='Functional_API_Multi_Input_Model.png')
Image('Functional_API_Multi_Input_Model.png')

3、Multi Output Model

单输入多输出模型,例如人像识别为一个输入(人物照片)和两个输出(年龄和性别),人物照片(128,128,3)输入经过4个隐藏层,而输出为年龄(1, )和性别(1, )两种不同的信息。

# 网络模型输入层
inputs = keras.Input(shape=(28,28,1),name='Input')

# 网络模型隐藏层
h1 = layers.Conv2D(64,3,activation='relu',name='hidden1')(inputs)
h2 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden2')(h1)
h3 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden3')(h2)
flatten = layers.Flatten()(h3)

# 网络模型输出层
age_output = layers.Dense(1,name='Age_Output')(flatten)
gender_output = layers.Dense(1,name='Gender_Output')(flatten)

# 建立网络模型
model = keras.Model(inputs=inputs,outputs=[age_output,gender_output])

# 显示网络模型架构
plot_model(model,to_file='Functional_API_Multi_Input_Model.png')
Image('Functional_API_Multi_Input_Model.png')

4、Multi Input and Output Model

多输入多输出模型,例如天气预测为两个输入(卫星云图和气候信息)和3个输出(概率、温度和湿度),卫星云图(256×256×3)输入经过3个隐藏层,气候信息(10,)输入经过一个隐藏层并结合两个信息,而输出为气候信息,如降雨概率(1,)、温度(1,)和湿度(1,)3种不同的信息。

# 网络模型输入层
image_inputs = keras.Input(shape=(256,256,3),name='Image_Input')
info_inputs = keras.Input(shape=(10,),name='Info_Input')

# 网络模型隐藏层(Image Input)
h1 = layers.Conv2D(64,3,activation='relu',name='hidden1')(image_inputs)
h2 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden2')(h1)
h3 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden3')(h2)
flatten = layers.Flatten()(h3)

# 网络模型隐藏层(Information Input)
h4 = layers.Dense(64)(info_inputs)
concat = layers.Concatenate()([flatten,h4]) # 结合Image和Information特征

# 网络模型输出层
weather_outputs = layers.Dense(1,name='Output1')(concat)
temp_outputs = layers.Dense(1,name='Output2')(concat)
humidity_outputs = layers.Dense(1,name='Output3')(concat)

# 建立网络模型
model = keras.Model(inputs=[image_inputs,info_inputs],outputs=[weather_outputs,temp_outputs,humidity_outputs])

# 显示网络模型架构
plot_model(model,to_file='Functional_API_Multi_Input_AND_Output_Model.png')
Image('Functional_API_Multi_Input_AND_Output_Model.png')

 

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值