Keras

Keras本身没有运算能力,它在TensorFlow、CNTK、Theano等深度学习开源套件上执行,将这些深度学习套件封装为更容易使用的指令。TensorFlow2.0将Keras收纳为内建的高级API,直接通过tf.keras指令即可调用。

一、两种常用的网络搭建方法

(1)Sequential Model(序贯模型)。
(2) Functional API(函数式模型,或称为函数式API)。

接下来的范例会使用以下几种网络层,先简略介绍,重点在于明白使用Keras搭建网络架构的方便性与灵活性。

(1)Dense:搭建全连接层的指令。
(2)Conv2d:搭建卷积层的指令。
(3)Flatten:将输入压平,重塑(Reshape)成一维张量,大多用于卷积层与全连接层之间
(4)Add:将两个层的输出加在一起
(5)Concatenate:将两个层的输出以指定的维度进行拼接(Concat),这种方法与Add万法相比保留了更多信息量,但计算量较大。

二、序贯模型(Sequential Model)

序贯模型(Sequential Model)的搭建方法简单快速,基本上只要是回归问题或分类问题,就可以用序贯模型解决。但是,序贯模型的搭建方法有限制,必须逐层按序搭建网络,而且网络模型必须为单个输入层和单个输出层。图2-9所示为Single Inout and Output Model(单输入输出模型)。

以分类问题为例:输入为28×28的图像并压平为784的一维向量,输出为10个元素的一维向量(分为10个类别),中间使用两个隐藏层,各拥有64个神经元,而隐藏层的激活函数为ReLU,输出层为Softmax。

1、导入必要的套件

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.utils import plot_model
from IPython.display import Image

2、建立模型

方法一

# 建立一个序贯模型
model = keras.Sequential(name='Sequential')
# 每次model.add会增加一层网络到模型中,第一层需要定义输入尺寸(input_shape)
# 第一个数值表示输出个数,即该层神经元的个数
model.add(layers.Dense(64, activation='relu', input_shape=(784,)))
model.add(layers.Dense(64, activation='relu'))
# 最后一层会被当作模型的输出层
model.add(layers.Dense(10,activation='softmax'))
# 产生网络拓扑图
plot_model(model,to_file='Functional_API_Sequential_Model.png')
# 显示网络拓扑图
Image('Functional_API_Sequential_Model.png')

 方法二

# 可以将所有网络层放到一个列表list中,并作为tf.keras.Sequential的参数
# 而这个列表同样有顺序性,第一个需要定义输入大小,最后一个为输出层
model = tf.keras.Sequential([
    layers.Dense(64,activation='relu',input_shape=(784,)),
    layers.Dense(64,activation='relu'),
    layers.Dense(10,activation='softmax')])
# 产生网络拓扑图
plot_model(model,to_file='Functional_API_Sequential_Model.png')
# 显示网络拓扑图
Image('Functional_API_Sequential_Model.png')

 三、函数式模型(Functional ADI)

Keras中的 Functional ADI提供了更多的灵活性,能够建立更复杂的模型。例如多输入单输出模型、单输入多输出模型和多输入多输出模型等,如图2-11所示。

Functional API在使用上非堂灵活,下面介绍几种高级应用。

(1) 物体检测(Object Detection)。
(2) 图像分割 (Image Segmentation)。
(3) 生成式对抗网络(Generative Adversarial Network)。

下面将按序介绍几种网络架构以及应用的场景。

(1) Single Input and Output Model:单输入单输出模型。
(2) Multi Input Model:多输入单输出模型。
(3) Multi Output Model:单输入多输出模型。
(4) Multi Input and Output Model:多输入多输出模型。

1、Single Input and Output Model

单输入单输出模型,例如输入为28×28的图像并压平为784 的一维向量,输出为10个元素的一维向量(分为10个类别),中间使用两个隐藏层,各拥有64个神经元,而隐藏层的激活函数为 ReLU,输出层为Softmax。

# 不同于序贯模型和Functional API需要建立输入层
inputs = keras.Input(shape=(784,),name='input')
h1 = layers.Dense(64,activation='relu',name='hidden1')(inputs)
h2 = layers.Dense(64,activation='relu',name='hidden2')(h1)
outputs = layers.Dense(10,activation='softmax',name='output')(h2)

# 这个keras.Model会自动将输入层到输出层所有经过的各层连接起来建立成网络
model = keras.Model(inputs=inputs, outputs=outputs)

plot_model(model,to_file='Functional_API_Single_Input_And_Output_Model.png')
Image('Functional_API_Single_Input_And_Output_Model.png')

 2、Multi Input Model

多输入单输出模型,例如商品价格预测为两个输入(商品图片和商品品牌)和一个输出(价格预测),商品图片(128,128,3)输入经过3个隐藏层,商品品牌(1,)输入经过一个隐藏层,结合两个信息后再经过一个隐藏层,而输出为价格预测(1,)。

# 网络模型输入层
img_input = keras.Input(shape=(128,128,3),name='Image_Input')
info_input = keras.Input(shape=(1,),name='Information_Input')

# 网络模型隐藏层
h1_1 = layers.Conv2D(64,5,strides=2,activation='relu',name='hidden1_1')(img_input)
h1_2 = layers.Conv2D(32,5,strides=2,activation='relu',name='hidden1_2')(h1_1)
h1_2_ft = layers.Flatten()(h1_2)
h1_3 = layers.Dense(64,activation='relu',name='hidden1_3')(info_input)
concat = layers.Concatenate()([h1_2_ft,h1_3])
h2 = layers.Dense(64,activation='relu',name='hidden2')(concat)

# 网络模型输出层
outputs = layers.Dense(1,name='Output')(h2)

# 建立网络模型
model = keras.Model(inputs=[img_input,info_input],outputs=outputs)

# 显示网络模型架构
plot_model(model,to_file='Functional_API_Multi_Input_Model.png')
Image('Functional_API_Multi_Input_Model.png')

3、Multi Output Model

单输入多输出模型,例如人像识别为一个输入(人物照片)和两个输出(年龄和性别),人物照片(128,128,3)输入经过4个隐藏层,而输出为年龄(1, )和性别(1, )两种不同的信息。

# 网络模型输入层
inputs = keras.Input(shape=(28,28,1),name='Input')

# 网络模型隐藏层
h1 = layers.Conv2D(64,3,activation='relu',name='hidden1')(inputs)
h2 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden2')(h1)
h3 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden3')(h2)
flatten = layers.Flatten()(h3)

# 网络模型输出层
age_output = layers.Dense(1,name='Age_Output')(flatten)
gender_output = layers.Dense(1,name='Gender_Output')(flatten)

# 建立网络模型
model = keras.Model(inputs=inputs,outputs=[age_output,gender_output])

# 显示网络模型架构
plot_model(model,to_file='Functional_API_Multi_Input_Model.png')
Image('Functional_API_Multi_Input_Model.png')

4、Multi Input and Output Model

多输入多输出模型,例如天气预测为两个输入(卫星云图和气候信息)和3个输出(概率、温度和湿度),卫星云图(256×256×3)输入经过3个隐藏层,气候信息(10,)输入经过一个隐藏层并结合两个信息,而输出为气候信息,如降雨概率(1,)、温度(1,)和湿度(1,)3种不同的信息。

# 网络模型输入层
image_inputs = keras.Input(shape=(256,256,3),name='Image_Input')
info_inputs = keras.Input(shape=(10,),name='Info_Input')

# 网络模型隐藏层(Image Input)
h1 = layers.Conv2D(64,3,activation='relu',name='hidden1')(image_inputs)
h2 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden2')(h1)
h3 = layers.Conv2D(64,3,strides=2,activation='relu',name='hidden3')(h2)
flatten = layers.Flatten()(h3)

# 网络模型隐藏层(Information Input)
h4 = layers.Dense(64)(info_inputs)
concat = layers.Concatenate()([flatten,h4]) # 结合Image和Information特征

# 网络模型输出层
weather_outputs = layers.Dense(1,name='Output1')(concat)
temp_outputs = layers.Dense(1,name='Output2')(concat)
humidity_outputs = layers.Dense(1,name='Output3')(concat)

# 建立网络模型
model = keras.Model(inputs=[image_inputs,info_inputs],outputs=[weather_outputs,temp_outputs,humidity_outputs])

# 显示网络模型架构
plot_model(model,to_file='Functional_API_Multi_Input_AND_Output_Model.png')
Image('Functional_API_Multi_Input_AND_Output_Model.png')

 

Keras:基于Theano和TensorFlow的深度学习库 这就是Keras Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano。Keras 为支持快 速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 Keras适用的Python版本是:Python 2.7-3.5 Keras的设计原则是 模块性:模型可理解为一个独立的序列或图,完全可配置的模块以最少的代价自由组合在一起。具 体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可 以使用它们来构建自己的模型。 极简主义:每个模块都应该尽量的简洁。每一段代码都应该在初次阅读时都显得直观易懂。没有黑 魔法,因为它将给迭代和创新带来麻烦。 易扩展性:添加新模块超级简单的容易,只需要仿照现有的模块编写新的类或函数即可。创建新模 块的便利性使得Keras更适合于先进的研究工作。 与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描 述,使其更紧凑和更易debug,并提供了扩展的便利性。 Keras从2015年3月开始启动,经过一年多的开发,目前Keras进入了1.0的时代。Keras 1.0依然遵循相 同的设计原则,但与之前的版本相比有很大的不同。如果你曾经使用过此前的其他版本Keras。你或许 会关心1.0的新特性。 泛型模型:简单和强大的新模块,用于支持复杂深度学习模型的搭建。 更优秀的性能:现在,Keras模型的编译时间得到缩短。所有的RNN现在都可以用两种方式实现, Keras中文文档 以供用户在不同配置任务和配置环境下取得最大性能。现在,基于Theano的RNN也可以被展开, 以获得大概25%的加速计算。 测量指标:现在,你可以提供一系列的测量指标来在Keras的任何监测点观察模型性能。 更优的用户体验:我们面向使用者重新编写了代码,使得函数API更简单易记,同时提供更有效的 出错信息。 新版本的Keras提供了Lambda层,以实现一些简单的计算任务。 ... 如果你已经基于Keras0.3编写了自己的层,那么在升级后,你需要为自己的代码做以下调整,以 在Keras1.0上继续运行。请参考编写自己的层 关于Keras-cn 本文档是Keras文档的中文版,包括keras.io的全部内容,以及更多的例子、解释和建议,目前,文档 的计划是: 1.x版本:现有keras.io文档的中文翻译,保持与官方文档的同步 2.x版本:完善所有【Tips】模块,澄清深度学习中的相关概念和Keras模块的使用方法 3.x版本:增加Keras相关模块的实现原理和部分细节,帮助用户更准确的把握Keras,并添加更多 的示例代码 现在,keras-cn的版本号将简单的跟随最新的keras release版本 由于作者水平和研究方向所限,无法对所有模块都非常精通,因此文档中不可避免的会出现各种错误、 疏漏和不足之处。如果您在使用过程中有任何意见、建议和疑问,欢迎发送邮件 到moyan_work@foxmail.com与我取得联系。 您对文档的任何贡献,包括文档的翻译、查缺补漏、概念解释、发现和修改问题、贡献示例程序等,均 会被记录在致谢,十分感谢您对Keras中文文档的贡献! 同时,也欢迎您撰文向本文档投稿,您的稿件被录用后将以单独的页面显示在网站中,您有权在您的网 页下设置赞助二维码,以获取来自网友的小额赞助。 如果你发现本文档缺失了官方文档的部分内容,请积极联系我补充。 本文档相对于原文档有更多的使用指导和概念澄清,请在使用时关注文档中的Tips,特别的,本文档的 额外模块还有: 一些基本概念:位于快速开始模块的一些基本概念简单介绍了使用Keras前需要知道的一些小知 识,新手在使用前应该先阅读本部分的文档。 Keras安装和配置指南,提供了详细的Linux和Windows下Keras的安装和配置步骤。 深度学习Keras:位于导航栏最下方的该模块翻译了来自Keras作者博客keras.io和其他Keras相关 博客的文章,该栏目的文章提供了对深度学习的理解和大量使用Keras的例子,您也可以向这个栏 目投稿。 所有的文章均在醒目位置标志标明来源与作者,本文档对该栏目文章的原文不具有任何处 置权。如您仍觉不妥,请联系本人(moyan_work@foxmail.com)删除。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值