大模型多卡训练原理

背景知识

深度学习涉及大量矩阵运算,而矩阵运算可以并行计算。

一、数据并行

每张卡加载不同的数据,将计算结果合并

存在问题:每个显卡都加载了模型,浪费了一定空间

二、模型并行:适合模型特别大的情况

1、串行计算

先用卡1计算结果1,然后卡2计算结果2,……卡n计算结果n,然后计算损失反向传播

串行计算,不是为了提速,而是为了解决模型一张卡放不下的问题

存在问题:gpu大量空闲

2、并行计算

batchsize=80,分成4个20

类似操作系统学的并行处理

存在问题:80个全部计算完,才反向传播

3、进一步优化

算完前向计算,直接反向传播,不等别人,gpu利用率进一步提高

绿色块为更新后的参数

存在问题:每一块gpu用的参数都不一样,参数不是同时更新的,模型层与层之间的参数不配套。

GPU优化:时间换空间或空间换时间

三、数据并行&模型并行

GPU1&GPU2、GPU3&GPU4:模型并行(难点:合理地切割模型)

GPU1&GPU3、GPU2&GPU4:数据并行

四、张量并行

1、一个完整,另一个按行或列并行

两张卡都保存x,卡1保存A列1,卡2保存A列2,分别计算然后拼接结果

支持激活函数的并行(因此常用)

2、对两个矩阵合理拆解

x和A都拆成两个模块,分别在卡1和卡2中计算,然后将结果相加

不支持激活函数的并行(因此不常用)

 3、其它拆法

优点:Gpu1和Gpu2没有重复数据,节约内存

五、多头注意力机制

大模型的核心:Transformer

Transformer的核心:多头注意力机制

多头注意力机制天然就适合并行计算

X1和X2的计算互不干扰

LSTM、RNN下一时刻的输出需要依赖上一时刻,无法做到并行,导致GPU闲置率太大。其效果不如注意力,同时与硬件也不匹配,因此失去研究前景。

GPT、T5、Bart、Bert都是基于注意力做的。

六、两台机器如何配合并行训练

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你可以使用PyTorch的`DataParallel`来实现单机多卡训练模型。`DataParallel`会自动将模型复制到每个可用的GPU并行计算,并在反向传播时进行梯度的累积和同步。 下面是一个简单的示例代码,展示了如何使用`DataParallel`来进行单机多卡训练模型: ```python import torch import torch.nn as nn from torch.utils.data import DataLoader # 定义模型 class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.fc = nn.Linear(10, 1) def forward(self, x): return self.fc(x) # 创建模型实例 model = MyModel() # 设置设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # 多卡训练 if torch.cuda.device_count() > 1: model = nn.DataParallel(model) # 使用DataParallel包装模型 # 定义数据集和数据加载器 dataset = YourDataset() # 自定义数据集 dataloader = DataLoader(dataset, batch_size=64, shuffle=True) # 定义优化器和损失函数 optimizer = torch.optim.SGD(model.parameters(), lr=0.001) criterion = nn.MSELoss() # 训练过程 for epoch in range(num_epochs): for inputs, labels in dataloader: inputs = inputs.to(device) labels = labels.to(device) # 前向传播 outputs = model(inputs) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}") # 保存模型 torch.save(model.state_dict(), "model.pth") ``` 在上述示例中,如果有多个可用的GPU,则`DataParallel`会自动将模型复制到每个可用的GPU并行计算。你可以通过`torch.cuda.device_count()`函数来检查可用的GPU数量。在训练过程中,你只需要像单卡训练一样使用模型即可,`DataParallel`会自动处理数据和梯度的同步。 请确保你的代码在使用`DataParallel`之前将模型移动到正确的设备上,并在训练过程中将数据和标签移动到相同的设备上。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值