Mathematics for Machine Learning学习笔记—3 解析几何

这一章主要讲了内积、范数、投影和正交化。几何向量的长度和角度。

3.1 Norms

几何向量(geometric vectors)是从原点开始的有向线段,向量的长度是“端”到原点的距离

范数(Norms)

Defifinition 3.1 (Norm) .在向量空间V中范数是\underset{x}{\rightarrow}的长度,表示为\left | \left | \underset{x}{\rightarrow}\right | \right |
性质:
1、 Absolutely homogeneous: \left | \left | \lambda \underset{x}{\rightarrow} \right | \right |= \left | \lambda \right |\left | \left | \underset{x}{\rightarrow} \right | \right |
       
2、Triangle inequality:\left \| \underset{x }{\rightarrow} +\underset{y}{\rightarrow}\right \|\leqslant \left \| \underset{x}{\rightarrow} \right \|+\left \| \underset{y}{\rightarrow} \right \|
 3、Positive defifinite(正定性):\left \| \underset{x}{\rightarrow} \right \|\geqslant 0; \left \| \underset{x}{\rightarrow} \right \|= 0\Leftrightarrow \underset{x}{\rightarrow}=\underset{0}{\rightarrow}
范数分为l_{1}范数、l_{2}范数、l_{p}范数、l_{\infty }范数
l_{1}范数:\left \| \underset{x}{\rightarrow} \right \|_{1}=\sum_{i=1}^{n}\left | x_{i} \right |
l_{2}范数:\left \| \underset{x}{\rightarrow} \right \|_{2}= \sqrt{\sum_{i=1}^{n}x_{i}^{2}}= \sqrt{\underset{x}{\rightarrow}^{T}\cdot \underset{x}{\rightarrow}}

l_{p}范数:\left \| \underset{x}{\rightarrow} \right \|_{p}= \sqrt[p]{\sum_{i=1}^{n}\left | x_{i} \right |^{p}}

 l_{\infty }范数: \left \| \underset{x}{\rightarrow} \right \|_{\infty }=\max_{i\leqslant i\leqslant n}\left | x_{i} \right |

3.2 Inner Products

内积(Inner Products)

一个向量的长度可以用内积表示,两个向量之间的角度和向量之间的距离也可以用内积表示。内积主要的目的是为了判断向量之间是否正交。

3.2.1 Dot Products

点积(Dot Products):点积是内积的一种。

\underset{x}{\rightarrow}^{T}\cdot \underset{y}{\rightarrow}= \sum_{i=1}^{n}x_{i}y_{i}

3.2.2 General Inner Products

双线性映射\Omega,向量空间V,向量\underset{x}{\rightarrow},\underset{y}{\rightarrow},\underset{z}{\rightarrow}\in V\lambda ,\psi \in R, 满足:

\Omega \left ( \lambda \underset{x}{\rightarrow} +\psi \underset{y}{\rightarrow},\underset{z}{\rightarrow}\right )=\lambda \Omega \left ( \underset{x}{\rightarrow},\underset{z}{\rightarrow} \right )+\psi \Omega \left ( \underset{y}{\rightarrow} ,\underset{z}{\rightarrow}\right )

\Omega \left (\underset{x}{\rightarrow} ,\lambda \underset{y}{\rightarrow} +\psi \underset{z}{\rightarrow}\right )=\lambda \Omega \left ( \underset{x}{\rightarrow},\underset{y}{\rightarrow} \right )+\psi \Omega \left ( \underset{x}{\rightarrow} ,\underset{z}{\rightarrow}\right )

Defifinition 3.2.
1.若对\forall\underset{x}{\rightarrow},\underset{y}{\rightarrow}\in V,V是一维空间\Omega \left ( \underset{x}{\rightarrow},\underset{y}{\rightarrow} \right )=\Omega \left ( \underset{y}{\rightarrow} ,\underset{x}{\rightarrow}\right ),则称 \Omega是对称的 ( symmetric

2.若对\forall \underset{x}{\rightarrow}\in V and \underset{x}{\rightarrow}\neq \underset{0}{\rightarrow}\Omega \left ( \underset{x}{\rightarrow},\underset{x}{\rightarrow} \right )> 0\Omega \left ( \underset{0}{\rightarrow} ,\underset{0}{\rightarrow}\right )=0, 则称\Omega是正定的(positive defifinite

Defifinition 3.3.
1.一个对称正定的双线性映射 \Omega,被叫做向量空间V上的内积,将内积 \Omega\left ( \underset{x}{\rightarrow} ,\underset{y}{\rightarrow}\right )写作 \left \langle \underset{x}{\rightarrow},\underset{y}{\rightarrow} \right \rangle
2. \left ( V,\left \langle \cdot ,\cdot \right \rangle \right )叫做内积空间或者叫(实)带有内积的向量空间。如果是点积,则叫做欧几里得向量空间。
在这本书里,作者将所有空间认作内积空间,将所有出现的内积作为点积来计算。
Example3.3(内积不是点积)作者在这部分证明了内积不是点积,举例在二维空间下,内积不是点积。

3.2.3 Symmetric, Positive Defifinite Matrices

对称正定矩阵(Symmetric, Positive Defifinite Matrices)由内积定义得到的,在机器学习中有重要的作用。

一个具有内积的n维向量空间V,向量空间V中的一组有序的基向量B=\left ( \underset{b_{1}}{\rightarrow} ,\cdots ,\underset{b_{n}}{\rightarrow}\right ),向量空间中的向量\underset{x}{\rightarrow},\underset{y}{\rightarrow}\in V可以由基向量线性表示,\underset{x}{\rightarrow}=\sum_{i=1}^{n}\psi _{i}\underset{b_{i}}{\rightarrow}\underset{y}{\rightarrow}=\sum_{j=1}^{n}\lambda _{j}\underset{b_{j}}{\rightarrow},根据内积的双线性,对all\underset{x}{\rightarrow},\underset{y}{\rightarrow}\in V都有:

\left \langle \underset{x}{\rightarrow} ,\underset{y}{\rightarrow}\right \rangle=\left \langle \sum_{i=1}^{n} \psi _{i}\underset{b_{i}}{\rightarrow},\sum_{j=1}^{n}\lambda _{j}\underset{b_{j}}{\rightarrow}\right \rangle=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi _{i}\left \langle \underset{b_{i}}{\rightarrow},\underset{b_{j}}{\rightarrow} \right \rangle\lambda _{j}=\hat{\underset{x}{\rightarrow}}^{T}A\hat{\underset{y}{\rightarrow}}

内积<·,·>由A唯一确定,内积是对称的,意味着A也是对称的。

Defifinition 3.4 \forall \underset{x}{\rightarrow}\in V and\underset{x}{\rightarrow}\neq \underset{0}{\rightarrow}\underset{x}{\rightarrow}^{T}A\underset{x}{\rightarrow} > 0,A被称为对称正定矩阵或者正定矩阵;若\underset{x}{\rightarrow}^{T}A\underset{x}{\rightarrow} \geqslant 0,则A被称为对称半正定矩阵

3.3 Lengths and Distances

将内积当作点积的时候,内积可以诱导出二范数。

Definition 3.6 (距离和矩阵)\underset{x}{\rightarrow} and\underset{y}{\rightarrow}的距离d\left ( \underset{x}{\rightarrow},\underset{y}{\rightarrow} \right ):=\left \| \underset{x}{\rightarrow} -\underset{y}{\rightarrow}\right \|=\sqrt{\left \langle \underset{x}{\rightarrow} -\underset{y}{\rightarrow},\underset{x}{\rightarrow} -\underset{y}{\rightarrow}\right \rangle}

3.4 Angles and Orthogonality

Orthogonality(正交性)

orthogonal(正交的)

orthonormal(正交规范)

两个向量\underset{x}{\rightarrow},\underset{y}{\rightarrow}之间的角度wcos\omega =\frac{\left \langle \underset{x}{\rightarrow} ,\underset{y}{\rightarrow}\right \rangle}{\left \| \underset{x}{\rightarrow}\right \|_{2}\left \| \underset{y}{\rightarrow} \right \|_{2}}=\frac{\left \langle \underset{x}{\rightarrow} ,\underset{y}{\rightarrow}\right \rangle}{\sqrt{\left \langle \underset{x}{\rightarrow} ,\underset{x}{\rightarrow}\right \rangle\left \langle \underset{y}{\rightarrow} ,\underset{y}{\rightarrow}\right \rangle}}=\frac{\underset{x}{\rightarrow}^{T}\underset{y}{\rightarrow}}{\sqrt{\underset{x}{\rightarrow}^{T}\underset{x}{\rightarrow}\underset{y}{\rightarrow}^{T}\underset{y}{\rightarrow}}}

Definition3.7(正交性)当且仅当\left \langle \underset{x}{\rightarrow},\underset{y}{\rightarrow} \right \rangle=0,两向量正交。若向量\underset{x}{\rightarrow},\underset{y}{\rightarrow}正交,且\left \| \underset{x}{\rightarrow} \right \|=\left \| \underset{y}{\rightarrow} \right \|=1,则\underset{x}{\rightarrow},\underset{y}{\rightarrow}是正交规范的(orthonoemal)。

 若两个向量正交,则两向量垂直(当内积当作点积时), 若内积不是点积,则两向量不垂直。Example3.7证明了这一点。

Definition 3.8(正交矩阵)正交矩阵的两种定义:

1.A^{T}=A^{-1}

2.方阵A_{n\times n}=\left [ \underset{\alpha _{1}}{\rightarrow} ,\cdots ,\underset{\alpha_{n }}{\rightarrow}\right ],\underset{\alpha _{i}}{\rightarrow}^{T}\underset{\alpha _{j}}{\rightarrow}=\left\{\begin{matrix} 0, i\neq j\\ 1,i=j \end{matrix}\right.

 矩阵是对象,一张数表存信息;矩阵是一种对向量操作的算子,有旋转和伸缩两种操作,A\underset{x}{\rightarrow},表示A作用在\underset{x}{\rightarrow}上,对\underset{x}{\rightarrow}进行伸缩和旋转,但是当矩阵A固定时,对不同的向量的作用效果不一定相同。但是当A是正交矩阵时,矩阵A具有保长性和保角性。

保长性:\left \| A\underset{x}{\rightarrow} \right \|_{2}=\left \| \underset{x}{\rightarrow} \right \|_{2}

\left \| A\underset{x}{\rightarrow} \right \|^{2}_{2}=\left ( A\underset{x}{\rightarrow} \right )^{T}\left ( A\underset{x}{\rightarrow} \right )=\underset{x}{\rightarrow}^{T}A^{T}A\underset{x}{\rightarrow}=\underset{x}{\rightarrow}^{T}I\underset{x}{\rightarrow}=\underset{x}{\rightarrow}^{T}\underset{x}{\rightarrow}=\left \| \underset{x}{\rightarrow} \right \|_{2}^{2},正交矩阵A对所有向量的伸缩比例都是1;

保角性:

\small cos\omega =\frac{\left ( A\underset{x}{\rightarrow} \right )^T\left ( A\underset{y}{\rightarrow} \right )}{\left \| A\underset{x}{\rightarrow} \right \|\left \| A\underset{y}{\rightarrow} \right \|}= \frac{\underset{x}{\rightarrow}^{T}\underset{y}{\rightarrow}}{\sqrt{\left ( A\underset{x}{\rightarrow} \right )^{T}\left ( A\underset{x}{\rightarrow} \right )\left ( A\underset{y}{\rightarrow} \right )^{T}\left ( A\underset{y}{\rightarrow} \right )}}=\frac{\underset{x}{\rightarrow}^{T}\underset{y}{\rightarrow}}{\left \| \underset{x}{\rightarrow} \right \|\left \| \underset{y}{\rightarrow} \right \|}

 

3.5 Orthonormal Basis

Orthonormal Basis(正交基)

Definition3.9(正交基)基向量的正交性:\small \left \langle \underset{b_{i}}{\rightarrow},\underset{b_{j}}{\rightarrow} \right \rangle=\left\{\begin{matrix} 0,i\neq j\\ 1,i=j \end{matrix}\right.

3.6 Orthogonal Complement

Orthogonal Complement(正交补):两个子空间正交,三维空间中,过原点的平面和过原点的直线垂直。

3.7 Inner Product of Functions

函数的内积\small \left \langle u,v \right \rangle=\int_{a}^{b}u\left ( x \right )v\left ( x \right )dx

3.8 Orthogonal Projections

3.9 Rotations

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 数学对机器学习具有重要的指导作用。机器学习是一种利用计算机算法来解决问题并自动改进的方法。数学作为机器学习的基础,为我们提供了理论和工具,帮助我们理解和解决许多机器学习问题。 首先,线性代数在机器学习中起着关键作用。线性代数涉及矩阵和向量的运算,而这些在机器学习中经常被用来表示数据和模型。通过线性代数,我们可以理解和操作数据集,推导和求解机器学习模型。 其次,微积分在机器学习中也非常重要。微积分涉及函数的导数和积分,而这些在优化和概率模型中扮演着重要角色。通过微积分,我们可以优化模型的参数,通过梯度下降算法来最小化损失函数,并进行机器学习模型的训练。 另外,概率论和统计学在机器学习中也扮演着重要角色。概率论帮助我们建立模型,量化不确定性,推断未知的数据。统计学则提供了评估模型性能和参数估计的方法。通过概率论和统计学,我们可以进行模型选择,避免过拟合或欠拟合,并对模型进行评估和比较。 最后,数学还有其他分支与机器学习密切相关,如图论、离散数学和信息论。图论帮助我们理解和建模复杂的关系网络。离散数学提供了解决离散问题的工具和方法。信息论则涉及消息的编码和传输,为我们提供了衡量数据的不确定性和相关性的度量方式。 总而言之,数学为机器学习提供了强大的理论基础和实用工具。它不仅帮助我们理解机器学习的原理和方法,还为我们解决实际问题提供了数学模型和算法。因此,数学是机器学习不可或缺的一部分。 ### 回答2: 数学对于机器学习非常重要。机器学习是一种通过自动学习和推理来改进系统性能的方法。它涉及到大量的数据处理、模型构建和预测分析。数学提供了机器学习的基础理论和方法。下面我会具体介绍数学在机器学习中的几个关键方面。 首先,线性代数是机器学习中的基础。矩阵和向量是线性代数的基本工具,用于表示和处理数据。在机器学习中,数据通常以矩阵和向量的形式进行处理和运算。线性代数还提供了矩阵分解和特征值分析等重要技术,用于数据降维和模型优化。 其次,概率论和统计学是机器学习的核心概念。机器学习算法的设计和评估都依赖于统计学的基本方法。概率论使我们能够对不确定性进行建模,并通过统计学方法对数据进行分析和推断。这些技术可以帮助我们理解模型的性质,评估模型的性能,并做出有根据的决策。 另外,优化理论在机器学习中起着关键的作用。机器学习算法通常通过最小化或最大化某种损失函数来优化模型。优化理论提供了一系列数学方法,用于寻找最优解。这些方法可以帮助我们找到参数的最佳取值,进而提高模型的性能。 最后,微积分也是机器学习的重要工具。微积分用于解决连续域的优化问题,例如梯度下降法。梯度下降法是一种常用的优化算法,通过迭代地调整模型参数,使得损失函数逐渐减小。 总而言之,数学为机器学习提供了理论基础和实践工具。线性代数、概率论和统计学、优化理论以及微积分等数学方法在机器学习中发挥着重要的作用,帮助我们理解和解决实际问题。因此,学习数学对于理解和应用机器学习是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值