机器学习中的数学:(二)解析几何

解析几何(Analytic Geometry)

这章将从几何的角度理解之前提及的一些概念。

范数(Norm)

范数实际上就是向量的一个长度
在这里插入图片描述
范数有以下性质:
在这里插入图片描述

  • 第一个绝对齐次(?)实际上数量积不就是对向量长度的一个延伸,所以,缩放的量可以提出来。
  • 第二个三角不等式,因为两个向量和这两个向量的向量和会形成一个三角形,三角形有一个性质就是两边之和大于等于第三边
  • 最后一个是因为长度是非负的

下面是两种不同的范数,这种区别是对距离的定于不同导致的。

曼哈顿范数(Manhattan Norm)

在这里插入图片描述
由上图可以了解到曼哈顿距离和欧几里得距离的区别,这样曼哈顿距离就是对应的向量(坐标)所有元素的绝对值之和。其实就是点在水平和竖直方向的位移总和。( x i x_i xi表示向量的元素, ∣ ⋅ ∣ |\cdot| 表示绝对值)
在这里插入图片描述
表示方式: ℓ 1 \ell_1 1

欧几里得范数(Euclidean Norm)

这个使用的就是直观的“直线距离”:
在这里插入图片描述
表示方式: ℓ 2 \ell_2 2

曼哈顿范数(左)和欧几里得范数(右)的实例:
在这里插入图片描述

内积(Inner Product)

内积可以理解为,两个向量在同一向量空间(转换后)下的长度的乘积。
点积:两维度相同的向量相乘最后得到一个实数。
x ⊤ y = ∑ i = 1 n x i y i x^\top y = \sum_{i=1}^{n}x_iy_i xy=i=1nxiyi
点积的几何含义:
在这里插入图片描述
所以从图像上看,可以得到部分点积的性质:当两向量相反的时候,点积为负数;当两向量垂直的时候,点积为0(在另一个向量的投影的长度为0)。当两向量方向相同的时候,点积为正。
内积的齐次性和对称性:两个向量哪个投影至哪个其实并没有什么区别,所以,二者乘积的顺序是无关紧要的。

点积为什么是这样计算的?
在这里插入图片描述
在这里插入图片描述

广义内积

双线性映射(bilinear mapping)
在这里插入图片描述
当映射的参数顺序交换后,映射结果保持一致,这种性质称为对称(symmetric).当映射结果不会小于0, 这种性质称为正定(positive definite)
在这里插入图片描述
这样,内积的广义定义就是一个正定、对称的双线性映射。
在这里插入图片描述

内积空间是不是就是向量空间中两两通过运算之后得到一个实数的向量组成的空间?理解一下上图最后一句化的含义。
在这里插入图片描述

对称正定矩阵(Symmetric, Positive Definite Matrices)

在这里插入图片描述

由于内积是正定的,所以有上式可以得出:
∀ x ∈ V \ { 0 } : x T A x > 0 \forall x \in V \backslash \{0\}:x^T\bold Ax > 0 xV\{0}:xTAx>0
x x x是任意的非零向量。
对于一个满足上式的对称矩阵,称为正定矩阵
∀ x ∈ V \ { 0 } : x T A x ≥ 0 \forall x \in V \backslash \{0\}:x^T\bold Ax \ge 0 xV\{0}:xTAx0
满足上式的对称矩阵称为半正定矩阵

可以使用一个正定矩阵定义一个内积:
在这里插入图片描述
在这里插入图片描述
因为矩阵 A \bold A A正定,所以 x T A x > 0 \bold x^T \bold A \bold x>0 xTAx>0。这一就是说, A x ≠ 0 \bold A\bold x\ne 0 Ax=0所以A的零空间只能是 0 \bold 0 0。同时,对角线的元素都大于0,原因如下:
在这里插入图片描述

长度与距离(Lengths and Distances)

内积和范数之间的关系十分紧密。这样理解,(在欧氏几何内)内积其实就是一个向量在另一个向量上投影之后,得到的向量,这两个向量的长度的乘积就是内积。范数简单来说就是向量的长度。所以,两个相同的向量的内积就是这个向量的范数的平方。
∥ x ∥ : = ⟨ x , x ⟩ \|x\| := \sqrt {\langle x, x\rangle} x:=x,x

柯西-施瓦茨不等式(Cauchy-Schwarz Inequality):
在这里插入图片描述
对于这个公式用图形非常好理解:不等式左边是投影之后的两向量的乘积(见之前点积部分介绍的投影),而右边是两向量没有经过投影的长度乘积。而只有两向量相等的时候,一个向量投影到另一个向量不会损失长度,这时候不等式取得等号,否则投影之后的向量长度都会变小。
在欧几里得空间中有特例:
在这里插入图片描述
距离和度规(Distance and Metric):
距离的定义:
在这里插入图片描述
度规的定义:
在数学中,度量(度规)或距离函数是个函数,定义了集合内每一对元素之间的距离。
在这里插入图片描述

度规和内积有类似的性质,但是他们在某方面又是不同的。当两个向量越接近的时候,内积越大,而度规越小。

夹角与正交性(Angles and Orthogonality)

内积可以用于定义两向量的夹角
由之前提到的的柯西-施瓦茨不等式: ∣ ⟨ x , y ⟩ ∣ ⩽ ∥ x ∥ ∥ y ∥ |\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leqslant\|\boldsymbol{x}\|\|\boldsymbol{y}\| x,yxy可以得到:
− 1 ⩽ ⟨ x , y ⟩ ∥ x ∥ ∥ y ∥ ⩽ 1 -1 \leqslant \frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} \leqslant 1 1xyx,y1
在这里插入图片描述
在这里插入图片描述在这个范围内,余弦函数的单调的。 ω \omega ω用来表示两个向量的相近程度。
内积更重要的是可以为定义两向量的正交性:
在这里插入图片描述
两向量正交实际上就是他们之间的夹角为 90 ° 90\degree 90°,这时候的余弦值为0,由
cos ⁡ ω = ⟨ x , y ⟩ ∥ x ∥ ∥ y ∥ \cos \omega=\frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} cosω=xyx,y
因为 ∥ x ∥ \|\bold x\| x ∥ y ∥ \|\bold y\| y都是正定的,所以当 cos ⁡ ω = 0 \cos \omega = 0 cosω=0是, ⟨ x , y ⟩ \langle \bold x, \bold y \rangle x,y等于0.当x、y的范数(长度)为1时,称为规范化正交(orthonormal).当一个向量是 0 \bold 0 0时,它与所有的向量都正交。
正交依赖于内积,所以在不同的内积的情况下,正交性可能不同。

正交矩阵
在这里插入图片描述

转置矩阵的变换关系?

∥ A x ∥ ⊤ = ( A x ) ⊤ ( A x ) = x ⊤ A ⊤ A x = x ⊤ I x = x ⊤ x = ∥ x ∥ 2 \|A x\|^{\top}=(A x)^{\top}(A x)=x^{\top} A^{\top} A x=x^{\top} \boldsymbol{I} x=x^{\top} x=\|x\|^{2} Ax=(Ax)(Ax)=xAAx=xIx=xx=x2
cos ⁡ ω = ( A x ) ⊤ ( A y ) ∥ A x ∥ ∥ A y ∥ = x ⊤ A ⊤ A y x ⊤ A ⊤ A x y ⊤ A ⊤ A y = x ⊤ y ∥ x ∥ ∥ y ∥ \cos \omega=\frac{(\boldsymbol{A} \boldsymbol{x})^{\top}(\boldsymbol{A} \boldsymbol{y})}{\|\boldsymbol{A} \boldsymbol{x}\|\|\boldsymbol{A} \boldsymbol{y}\|}=\frac{\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{y}}{\sqrt{\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x} \boldsymbol{y}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{y}}}=\frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} cosω=AxAy(Ax)(Ay)=xAAxyAAy xAAy=xyxy
由上可知,向量在经过正交变换之后,他们之间的夹角和长度都没有发生变化,实际上,正交变换就是将向量进行旋转操作。

规范正交基(Orthonormal Basis)

在这里插入图片描述
一对规范正交基满足两个条件,二者之间的夹角和他们各自的长度。 规范(长度为1)且正交(两对基相互垂直)

格拉姆-施密特正交化 Gram–Schmidt process
这里时利用高斯消元法来取得正交规范正交基在这里插入图片描述

正交补(Orthogonal Complement)

在这里插入图片描述
一个向量空间的两个子空间,这两个子空间的维度之和等于原先的向量空间的维度,准确来说,一个子空间占领原空间的部分维度,另一个子空间占领剩余的维度,二者在维度上没有关系。

一个实例
在这里插入图片描述

这样,原先向量空间中的任意向量,都可以用这个子空间的有序基以及其正交补的有序基表示出来(分解):

x = ∑ m = 1 M λ m b m + ∑ j = 1 D − M ψ j b j ⊥ , λ m , ψ j ∈ R \boldsymbol{x}=\sum_{m=1}^{M} \lambda_{m} \boldsymbol{b}_{m}+\sum_{j=1}^{D-M} \psi_{j} \boldsymbol{b}_{j}^{\perp}, \quad \lambda_{m}, \psi_{j} \in \mathbb{R} x=m=1Mλmbm+j=1DMψjbj,λm,ψjR
其中, x \boldsymbol x x是原先的向量空间的一个向量, b \bold b b是原先空间的一个子空间的有序基, b ⊥ \bold b^{\perp} b是这个子空间的正交补的有序基。
在这里插入图片描述

函数的内积

有之前的点积:
x T y = ∑ i = 1 n x i y i x^Ty = \sum_{i = 1}^nx_iy_i xTy=i=1nxiyi
当向量的维度有无限维时,可以将这个利用定积分的定义,写成积分形式。
∫ a b f ( x ) = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i , λ = m a x { Δ x 1 , Δ x 2 , . . . , Δ x n } \int_{a}^{b}f(x) = \lim_{\lambda \rarr 0}\sum_{i=1}^nf(\xi_i)\Delta x_i,\quad \lambda = max\{\Delta x_1,\Delta x_2,...,\Delta x_n\} abf(x)=λ0limi=1nf(ξi)Δxi,λ=max{Δx1,Δx2,...,Δxn}
从而:
在这里插入图片描述

当两个函数在一定区间上的定积分为0时,说这两个函数时正交函数。

所有的正交函数够成的一个子空间在这里插入图片描述
想要正确理解这个无穷维向量的内积,需要将积分延伸到希尔伯特空间(Hilbert space)中。

正交投影(Orthogonal Projections)

在机器学习中,由于研究对象通常由多标签组成的,所以就不得不使用高维矩阵,但是实际上,大多数的信息仅仅存储在少部分的标签中,所以,当需要对矩阵进行可视化或者数据压缩的时候,为了减少造成的信息损失,可以使用正交投影,这样压缩之后的数据损失最小。
下面是对投影的定义:
在这里插入图片描述

π 2 = π ∘ π = π \pi^2 = \pi \circ \pi = \pi π2=ππ=π怎么理解?
应该是对一个向量进行两次投影的与进行一次投影的效果是一致的。 假设一个向量被正交投影到向量空间V中,然后再被正交投影到W中,那么这个向量可以直接利用一次正交变换投影到W中.
类似于 A ⊥ B , B ⊥ C ⇒ A ⊥ C A\perp B, B\perp C\Rightarrow A\perp C AB,BCAC
在这里插入图片描述

投影本质上就是一种对向量的变换,所以可以用矩阵来描述,所以投影操作对应的矩阵就是投影矩阵(projection matrices, P π 2 = P π \bold P_{\pi}^2 = \bold P_{\pi} Pπ2=Pπ

正交投影到一维子空间

可以通过以下三步求解投影矩阵:
在这里插入图片描述

1.找到坐标 λ \lambda λ:
⟨ x − π U ( x ) , b ⟩ = 0 ⟺ π U ( x ) = λ b ⟨ x − λ b , b ⟩ = 0 \left\langle\boldsymbol{x}-\pi_{U}(\boldsymbol{x}), \boldsymbol{b}\right\rangle=0 \stackrel{\pi_{U}(\boldsymbol{x})=\lambda \boldsymbol{b}}{\Longleftrightarrow}\langle\boldsymbol{x}-\lambda \boldsymbol{b}, \boldsymbol{b}\rangle=0 xπU(x),b=0πU(x)=λbxλb,b=0注意到 x − π U ( x ) \boldsymbol{x}-\pi_{U}(\boldsymbol{x}) xπU(x)是向量及其投影向量做差之后得到的向量,所以与投影到的向量正交。因为投影之后的向量属于向量空间U,所以可以用U中的有序基线性 b \bold b b表示。
⟨ x , b ⟩ − λ ⟨ b , b ⟩ = 0 ⟺ λ = ⟨ x , b ⟩ ⟨ b , b ⟩ = ⟨ b , x ⟩ ∥ b ∥ 2 . \langle\boldsymbol{x}, \boldsymbol{b}\rangle-\lambda\langle\boldsymbol{b}, \boldsymbol{b}\rangle=0 \Longleftrightarrow \lambda=\frac{\langle\boldsymbol{x}, \boldsymbol{b}\rangle}{\langle\boldsymbol{b}, \boldsymbol{b}\rangle}=\frac{\langle\boldsymbol{b}, \boldsymbol{x}\rangle}{\|\boldsymbol{b}\|^{2}} . x,bλb,b=0λ=b,bx,b=b2b,x.
这里是利用了内积的双线性的性质,将原先的式子进行了拆分,最后的等式是利用了内积的对称性。之后分离出 λ \lambda λ,任务完成。
λ = b ⊤ x b ⊤ b = b ⊤ x ∥ b ∥ 2 \lambda=\frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\boldsymbol{b}^{\top} \boldsymbol{b}}=\frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\|\boldsymbol{b}\|^{2}} λ=bbbx=b2bx
(这里探究当内积为点积的情况)

2.找到投影点(投影后的向量):
π U ( x ) = λ b = ⟨ x , b ⟩ ∥ b ∥ 2 b = b ⊤ x ∥ b ∥ 2 b \pi_{U}(\boldsymbol{x})=\lambda \boldsymbol{b}=\frac{\langle\boldsymbol{x}, \boldsymbol{b}\rangle}{\|\boldsymbol{b}\|^{2}} \boldsymbol{b}=\frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\|\boldsymbol{b}\|^{2}} \boldsymbol{b} πU(x)=λb=b2x,bb=b2bxb
将之前的结果带入式中,最后的等式为当内积为点积的时候成立。
∥ π U ( x ) ∥ = ( 3.42 ) ∣ b ⊤ x ∣ ∥ b ∥ 2 ∥ b ∥ = ( 3.25 ) ∣ cos ⁡ ω ∣ ∥ x ∥ ∥ b ∥ ∥ b ∥ ∥ b ∥ 2 = ∣ cos ⁡ ω ∣ ∥ x ∥ . \left\|\pi_{U}(\boldsymbol{x})\right\| \stackrel{(3.42)}{=} \frac{\left|\boldsymbol{b}^{\top} \boldsymbol{x}\right|}{\|\boldsymbol{b}\|^{2}}\|\boldsymbol{b}\| \stackrel{(3.25)}{=}|\cos \omega|\|\boldsymbol{x}\|\|\boldsymbol{b}\| \frac{\|\boldsymbol{b}\|}{\|\boldsymbol{b}\|^{2}}=|\cos \omega|\|\boldsymbol{x}\| . πU(x)=(3.42)b2bxb=(3.25)cosωxbb2b=cosωx.
点积为内积的情况下,同时,联立了 cos ⁡ ω = ⟨ x , y ⟩ ∥ x ∥ ∥ y ∥ \cos \omega=\frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} cosω=xyx,y

3.找到投影矩阵
π U ( x ) = λ b = b λ = b b ⊤ x ∥ b ∥ 2 = b b ⊤ ∥ b ∥ 2 x \pi_{U}(\boldsymbol{x})=\lambda \boldsymbol{b}=\boldsymbol{b} \lambda=\boldsymbol{b} \frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\|\boldsymbol{b}\|^{2}}=\frac{\boldsymbol{b} \boldsymbol{b}^{\top}}{\|\boldsymbol{b}\|^{2}} \boldsymbol{x} πU(x)=λb=bλ=bb2bx=b2bbx
于是:

P π = b b T ∥ b ∥ 2 \bold P_\pi = \frac{\bold b\bold b^T}{\|\bold b\|^2} Pπ=b2bbT
这样看投影矩阵就是一个对称矩阵。

正交投影到一般的子空间

假设一个子空间 U ⊆ R n , d i m ( U ) ≥ 1 U \subseteq \mathbb R^n, \quad dim(U)\ge1 URn,dim(U)1,因为投影的向量属于U,所以,这个投影向量可以用U的有序基表示出来:
π U ( x ) = ∑ i = 1 m λ i b i \bold \pi_U(\bold x) =\sum\limits_{i=1}^m\lambda_i\bold b_i πU(x)=i=1mλibi
1.找出投影的坐标 λ 1 , λ 2 . . . , λ n \lambda_1,\lambda_2...,\lambda_n λ1,λ2...,λn:

π U ( x ) = ∑ i = 1 m λ i b i = B λ B = [ b 1 , . . . , b m ] ∈ R n × m , λ = [ λ 1 , . . . , λ m ] T ∈ R m \bold\pi_U(\bold x) = \sum\limits_{i=1}^m\lambda_i\bold b_i = \bold B\bold\lambda\\\bold B=[\bold b_1,...,\bold b_m]\in\mathbb R^{n\times m},\quad\lambda=[\lambda_1,...,\lambda_m]^T\in\mathbb R^m πU(x)=i=1mλibi=BλB=[b1,...,bm]Rn×m,λ=[λ1,...,λm]TRm
假设内积为点乘:
⟨ b 1 , x − π U ( x ) ⟩ = b 1 ⊤ ( x − π U ( x ) ) = 0 ⋮ ⟨ b m , x − π U ( x ) ⟩ = b m ⊤ ( x − π U ( x ) ) = 0 \left\langle\boldsymbol{b}_{1}, \boldsymbol{x}-\pi_{U}(\boldsymbol{x})\right\rangle=\boldsymbol{b}_{1}^{\top}\left(\boldsymbol{x}-\pi_{U}(\boldsymbol{x})\right)=0\\\vdots\\\left\langle\boldsymbol{b}_{m}, \boldsymbol{x}-\pi_{U}(\boldsymbol{x})\right\rangle=\boldsymbol{b}_{m}^{\top}\left(\boldsymbol{x}-\pi_{U}(\boldsymbol{x})\right)=0 b1,xπU(x)=b1(xπU(x))=0bm,xπU(x)=bm(xπU(x))=0

π U = B λ \bold\pi_U = \bold B\bold\lambda πU=Bλ,带入到上式中:
b 1 T ( x − B λ ) = 0 ⋮ b m T ( x − B λ ) = 0 \bold b^T_1(\bold x - \bold B\bold\lambda)=0\\\vdots\\\bold b^T_m(\bold x-\bold B\lambda)=0 b1T(xBλ)=0bmT(xBλ)=0
转换成矩阵形式:
[ b 1 ⊤ ⋮ b m ⊤ ] [ x − B λ ] = 0 ⟺ B ⊤ ( x − B λ ) = 0 ⟺ B ⊤ B λ = B ⊤ x . \begin{aligned} \left[\begin{array}{c} b_{1}^{\top} \\ \vdots \\ b_{m}^{\top} \end{array}\right][x-B \lambda]=0 & \Longleftrightarrow B^{\top}(x-B \lambda)=0 & \Longleftrightarrow B^{\top} B \lambda=B^{\top} x . \end{aligned} b1bm[xBλ]=0B(xBλ)=0BBλ=Bx.
因为 B \bold B B是U的有序基,所以他是可逆的,所以可以得到:
λ = ( B T B ) − 1 B T x \lambda=(\bold B^T\bold B)^{-1}\bold B^T\bold x λ=(BTB)1BTx
其中: ( B T B ) − 1 B T (\bold B^T\bold B)^{-1}\bold B^T (BTB)1BT称为伪逆,可以用于计算非方阵矩阵。
2.找到投影向量:
π U = B λ \pi_U = \bold B\lambda πU=Bλ,带入上式:
π U ( x ) = B ( B T B ) − 1 B T x \pi_U(x) = \bold B(\bold B^T\bold B)^{-1}\bold B^T\bold x πU(x)=B(BTB)1BTx
3.找到投影矩阵:
P π x = π U ( x ) \bold P_\pi \bold x=\pi_U(\bold x) Pπx=πU(x),由上式可以得出:
P π = B ( B T B ) − 1 B T \bold P_\pi=\bold B(\bold B^T\bold B)^{-1}\bold B^T Pπ=B(BTB)1BT

原始向量与投影向量之差够成的向量的范数,称为重构误差(reconstruction error.)或者投影误差。在这里插入图片描述

虽然说 π U ( x ) ∈ R n \pi_U(\bold x)\in \mathbb R^n πU(x)Rn但是我们只需要用U的有序基就可以表示 π U ( x ) \pi_U(\bold x) πU(x)

用正交投影可以用于求非齐次方程 A x = b \bold A\bold x=\bold b Ax=b无解的时候的近似解。当这个方程无解的时候,说明 x \bold x x b \bold b b不在同一个向量空间中,所以无法通过一些变换( A \bold A A)得到 b \bold b b。这时候可以利用正交投影,将其中一个向量投影到另一个向量的向量空间中,这样可以得到一个近似解,其中的主要思想就是找到一个在A的张成空间中,与b最相近的向量。这样得到的解称为最小二乘解(least-squares solution)

格拉姆-施密特正交化(Gram-Schmidt Orthogonalization)

在这里插入图片描述

这里的目标是求出 u 2 u_2 u2,利用已知的数据 b 2 , u 1 b_2,u_1 b2,u1计算出 π s p a n [ u 1 ] ( b 2 ) \pi_{span[u_1]}(b_2) πspan[u1](b2)这样就可以利用 b 2 , π s p a n [ u 1 ] ( b 2 ) b_2,\pi_{span[u_1]}(b_2) b2,πspan[u1](b2)计算 u 2 u_2 u2了。

我们可以使用向量以及其投影所在的向量空间的有序基作差,得到一个法向量。然后递归地将有序基转化成正交基。
u : = b 1 u k : = b k − π s p a n [ u 1 , … , u k − 1 ] ( b k ) , k = 2 , … , n \bold {\mathcal u}:=\bold b_1 \\ \mathcal u_k:=\bold b_k- \pi_{span[\bold u_1,\dots,\bold u_{k-1}]}(\bold b_k),\quad k =2,\dots,n u:=b1uk:=bkπspan[u1,,uk1](bk),k=2,,n
其中, b k \bold b_k bk是之前缔造的正交向量组成的向量空间( u 1 , … , u k − 1 \bold u_1,\dots,\bold u_{k-1} u1,,uk1

在仿射空间中的正交投影

在这里插入图片描述
先将目标向量与支撑点( x 0 \bold x_0 x0)相减,得到的向量就是以仿射空间为起点的,这时候,问题就转换成我们之前讨论过的问题了。 π L ( x ) = x 0 + π U ( x − x 0 ) \pi_L(\bold x)=\bold x_0+\pi_U(\bold x-\bold x_0) πL(x)=x0+πU(xx0)
在这里插入图片描述

旋转变换

旋转实际上就是一种正交变换。在文中规定当旋转角度为正数的时候,图像作逆时针旋转。
在这里插入图片描述

在二维实空间中的旋转(Rotations in R 2 \mathbb R^2 R2

在这里插入图片描述
因为旋转之后的基向量仍然是线性无关的,所以,旋转也是一种基变换。由上可以得到旋转矩阵(旋转之后的向量):
Φ ( e 1 ) = [ cos ⁡ θ sin ⁡ θ ] , Φ ( e 2 ) = [ − sin ⁡ θ cos ⁡ θ ] \Phi\left(\boldsymbol{e}_{1}\right)=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right], \quad \Phi\left(\boldsymbol{e}_{2}\right)=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right] Φ(e1)=[cosθsinθ],Φ(e2)=[sinθcosθ]
R ( θ ) = [ Φ ( e 1 ) Φ ( e 2 ) ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] . \boldsymbol{R}(\theta)=\left[\begin{array}{ll}\Phi\left(\boldsymbol{e}_{1}\right) & \Phi\left(\boldsymbol{e}_{2}\right)\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] . R(θ)=[Φ(e1)Φ(e2)]=[cosθsinθsinθcosθ].

在三维实空间中的旋转(Rotations in R 2 \mathbb R^2 R2)

在这里插入图片描述
可以这样理解,先固定一个坐标轴,然后从上往下看去,得到这个向量在另外两个基向量所形成的向量空间中正交投影,然后再作相应的旋转操作。

关于 e 1 \bold e_1 e1的旋转操作:
R 1 ( θ ) = [ Φ ( e 1 ) Φ ( e 2 ) Φ ( e 3 ) ] = [ 1 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] \bold R_1(\theta)=\left[\begin{array}{c} \Phi(\bold e_1)&\Phi(\bold e_2) &\Phi(\bold e_3) \end{array}\right]=\left[\begin{array}{c} 1&0&0 \\0&\cos\theta&-\sin\theta\\0&\sin\theta&\cos\theta \end{array}\right] R1(θ)=[Φ(e1)Φ(e2)Φ(e3)]=1000cosθsinθ0sinθcosθ
类似的,只要固定哪个坐标轴,哪个坐标轴就是基向量。

n \mathcal n n维空间中的旋转

吉文斯旋转(Givens Rotation):
在这里插入图片描述
实际上就是等价于单位矩阵对应位置上变成一个正弦或者余弦值。

旋转的特性

简单来说就是变换之后向量之间的距离角度不变,三维及三维以上的旋转操作不满足交换律,二维的满足。
在这里插入图片描述

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习算法数学解析与Python实践是一本介绍了机器学习算法的数学原理和Python实现方法的书籍。该书以简洁清晰的方式解释了机器学习算法的数学基础,帮助读者理解算法的原理和推导过程。 该书主要包含以下内容: 1.数学基础:介绍了机器学习常用的数学知识,如线性代数、概率论和统计学等。这些基础知识对理解和应用机器学习算法至关重要。 2.机器学习算法原理:逐一介绍了各种常用的机器学习算法的原理和数学推导。例如,线性回归、逻辑回归、决策树、支持向量机和深度学习等。每个算法的原理都通过数学公式和推导来解释,使读者能够深入理解算法的原理。 3.Python实践:通过Python代码实现了每个算法的训练和预测过程。读者可以通过跟随书的实例代码,快速掌握如何使用Python库实现机器学习算法,并将其应用于真实的数据集。 此外,该书还提供了大量的练习题和实验项目,帮助读者巩固所学知识并加深对算法的理解。通过实践,读者可以学到如何选择合适的机器学习模型、调优模型参数以及评估模型性能等。 总的来说,机器学习算法数学解析与Python实践是一本适合希望深入学习机器学习算法原理和使用Python实现算法的读者的优秀教材。读者可以通过下载PDF版本的书籍,随时随地进行学习和实践。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值