VAMP由浅入深(Part-1:由消息传递直接推导)


Vector Approximate Message Passing, VAMP

前言

事实上,到今天为止,我才知道AMP/VAMP的推导方式并不局限,而且多种多样。此篇博客所介绍的VAMP推导方法基于期望传播算法(Expecation Propagation, EP),相对来说较为简单,也便于理解。

问题模型

考虑要从观测信号
y = A x 0 + w ∈ R M (1) \boldsymbol{y}=\boldsymbol{Ax}^0+\boldsymbol{w}\in \mathbb{R} ^M \tag{1} y=Ax0+wRM(1)
中恢复向量 x 0 ∈ R N \boldsymbol{x}^0\in \mathbb{R} ^N x0RN,其中, A ∈ R M × N \boldsymbol{A} \in \mathbb{R}^{M \times N} ARM×N已知。对于该问题,主要有以下两种解决思路:
思路1(优化方向):
x ^ = a r g min ⁡ x ∈ R N 1 2 ∥ y − A x ∥ 2 2 + f ( x ) (2) \hat {\pmb x} = \mathrm{arg} \underset{\boldsymbol{x}\in \mathbb{R} ^{\mathrm{N}}}{\min}\frac{1}{2}\left\| \boldsymbol{y}-\boldsymbol{Ax} \right\| _{2}^{2}+f\left( \boldsymbol{x} \right) \tag{2} xxx^=argxRNmin21yAx22+f(x)(2)
式(2)中的 f ( x ) f(\pmb x) f(xxx)的选取是为了提升估计 x ^ \hat {\pmb x} xxx^的结构性,比如选取 f ( x ) = λ ∥ x ∥ 1 f(\pmb x)=\lambda {\Vert {\pmb x} \Vert}_1 f(xxx)=λxxx1是考虑到 x 0 \boldsymbol{x}^0 x0的稀疏性。
思路2(贝叶斯方向):
MAP估计
MAP:   x ^ MAP = a r g max ⁡ x p ( x ∣ y ) = a r g max ⁡ x p ( y ∣ x ) p ( x ) (3) \text{MAP: } \ \hat {\pmb x}_{\text{MAP}}=\mathrm{arg} \underset{\boldsymbol x} {\max} p(\pmb x | \pmb y) = \mathrm{arg} \underset{\boldsymbol x} {\max} p(\pmb y | \pmb x) p(\pmb x) \tag{3} MAP:  xxx^MAP=argxmaxp(xxxyyy)=argxmaxp(yyyxxx)p(xxx)(3)

MMSE估计
MMSE:   x ^ MMSE = a r g min ⁡ x ~ ∫ ∥ x − x ~ ∥ 2 p ( x ∣ y ) d x = E [ x ∣ y ] (4) \text{MMSE: } \ \hat {\pmb x}_{\text{MMSE}}=\mathrm{arg} \underset{\boldsymbol{\tilde{x}}} {\min} \int {\Vert \boldsymbol x - \boldsymbol{\tilde{x}} \Vert}^2p(\pmb x | \pmb y) \text{d} \pmb x = \mathbb E[\pmb x | \pmb y] \tag{4} MMSE:  xxx^MMSE=argx~minxx~2p(xxxyyy)dxxx=E[xxxyyy](4)

后验概率密度函数
{ p ( x n ∣ y ) } n = 1 N (5) {\{p(x_n|\pmb y)\}}^N_{n=1} \tag{5} {p(xnyyy)}n=1N(5)

优化和贝叶斯的共通性:若式(1)中观测信号被高斯噪声破坏,即 w ∼ N ( 0 , γ ω − 1 I ) \pmb w \sim \mathcal N(\pmb 0, {\gamma_{\omega}}^{-1} \pmb I) wwwN(000,γω1III),那么当MAP准则中的先验概率 p ( x ) p(\pmb x) p(xxx)与优化中的正则项 f ( x ) f(\pmb x) f(xxx)满足
p ( x ) ∝ exp ⁡ [ − γ ω f ( x ) ] (6) p(\pmb x) \propto \exp[-\gamma_{\omega} f(\pmb x)] \tag{6} p(xxx)exp[γωf(xxx)](6)
时,认为式(2),即该优化方法与MAP等效。

AMP与贝叶斯推理的简要介绍

x \pmb x xxx的先验分布满足元素之间独立同分布(i.i.d.),那么
p ( x ) = ∏ n = 1 N p ( x n ) (7) p(\pmb x) = \prod_{n=1}^N p(x_n) \tag{7} p(xxx)=n=1Np(xn)(7)
对于AMP算法所使用的滤波函数,这里考虑依据以下两个准则分别建立:
准则1(MAP):滤波函数为( k k k表示迭代次数, γ k \gamma _k γk表示AMP状态演化时的噪声精度)
g 1 ( r k n , γ k ) = a r g min ⁡ x n ∈ R [ γ k 2 ∣ x n − r k n ∣ 2 − ln ⁡ p ( x n ) ] (8) \mathrm{g}_1\left( r_{kn},\gamma _k \right) =\mathrm{arg} \underset{x_n\in \mathbb{R}}{\min}\left[ \frac{\gamma _k}{2}\left| x_n-r_{kn} \right|^2-\ln p\left( x_n \right) \right] \tag{8} g1(rkn,γk)=argxnRmin[2γkxnrkn2lnp(xn)](8)
准则2(MMSE):滤波函数为
g 1 ( r k n , γ k ) = E p ( x n ∣ r k n , γ k ) [ x n ∣ r k n , γ k ] (9) \mathrm{g}_1\left(r_{kn},\gamma _k \right)=\mathbb E_{p(x_n|r_{kn},\gamma _k)} \left [ x_n|r_{kn},\gamma _k \right ] \tag{9} g1(rkn,γk)=Ep(xnrkn,γk)[xnrkn,γk](9)
其中,
p ( x n ∣ r k n , γ k ) ∝ exp ⁡ [ − γ k 2 ∣ x n − r k n ∣ 2 + ln ⁡ p ( x n ) ] (10) p(x_n|r_{kn},\gamma _k) \propto \exp \left [-\frac{\gamma _k}{2}\left| x_n-r_{kn} \right|^2+\ln p\left( x_n \right) \right ] \tag{10} p(xnrkn,γk)exp[2γkxnrkn2+lnp(xn)](10)
事实上,式(10)中的 p ( x n ∣ r k n , γ k ) p(x_n|r_{kn},\gamma _k) p(xnrkn,γk)可以被看作是AMP在第 k k k次迭代下的后验概率 p ( x n ∣ y ) p(x_n|\pmb y) p(xnyyy)。另外,对于式(9)所描述的MMSE滤波函数 g 1 ( r k n , γ k ) \mathrm{g}_1\left(r_{kn},\gamma _k \right) g1(rkn,γk)关于 r k n r_{kn} rkn的一阶导为:
g 1 ′ ( r k n , γ k ) = γ k var [ x n ∣ r k n , γ k ] (11) \mathrm{g}^{\prime}_1\left(r_{kn},\gamma _k \right) = \gamma_k \text{var} [ x_n | r_{kn},\gamma _k ] \tag{11} g1(rkn,γk)=γkvar[xnrkn,γk](11)
AMP的算法描述

AMP算法中的第7行,“Select γ k + 1 \gamma_{k+1} γk+1”建议使用
γ k + 1 = M ∥ v k ∥ 2 (12) \gamma_{k+1} = \frac{M}{{\Vert \pmb v_k \Vert}^2} \tag{12} γk+1=vvvk2M(12)
其中 v k \pmb v_k vvvk是第 k k k次迭代线性估计(第5行)的残差。

基于期望传播的VAMP推导

我们将联合概率密度函数做分解:
p ( y , x ) = p ( x ) N ( y ; A x , γ ω − 1 I ) (13) p(\pmb y, \pmb x) = p (\pmb x) \mathcal N(\pmb y; \pmb {Ax}, {\gamma_{\omega}}^{-1}\pmb I) \tag{13} p(yyy,xxx)=p(xxx)N(yyy;AxAxAx,γω1III)(13)
进一步引入Dirac符号,把 x \pmb x xxx拆分为两个等价的向量 x 1 \pmb x_1 xxx1 x 2 \pmb x_2 xxx2,则式(13)可分解为
p ( y , x 1 , x 2 ) = p ( x 1 ) δ ( x 1 − x 2 ) N ( y ; A x 2 , γ ω − 1 I ) (13) p(\pmb y, \pmb x_1, \pmb x_2) = p (\pmb x_1) \delta(\pmb x_1 - \pmb x_2) \mathcal N(\pmb y; \pmb {A} \pmb x_2, {\gamma_{\omega}}^{-1}\pmb I) \tag{13} p(yyy,xxx1,xxx2)=p(xxx1)δ(xxx1xxx2)N(yyy;AAAxxx2,γω1III)(13)
式(13)分解结果所对应的因子图为

图1:VAMP推导所使用的因子图

可以看出,该因子图的变量节点为向量形式而非标量。这里首先定义一下三个消息传递规则:

  1. 规则1(估计信念):在变量节点 x \pmb x xxx上的估计信念(Approximate Beliefs) b a p p ( x ) = N ( x ; x ^ , η − 1 I ) b_{app}(\pmb x) = \mathcal N(\pmb x; \hat {\pmb x},\eta^{-1} \pmb I) bapp(xxx)=N(xxx;xxx^,η1III),其中
    { x ^ = E b s p [ x ] η − 1 = < diag ( Cov b s p [ x ] ) > (14) \begin{cases} \hat {\pmb x}=\mathbb E_{b_{sp}}[\pmb x] \\ \eta^{-1} = <\text{diag}(\text{Cov}_{b_{sp}}[\pmb x])> \\ \end{cases} \tag{14} {xxx^=Ebsp[xxx]η1=<diag(Covbsp[xxx])>(14)
    其中, b s p ( x ) b_{sp}(\pmb x) bsp(xxx)表示所有到变量节点 x \pmb x xxx的信念之积,即 b s p ( x ) ∝ ∏ i μ f i → x ( x ) b_{sp}(\pmb x) \propto \prod_{i} \mu_{f_i \rightarrow \boldsymbol x}(\pmb x) bsp(xxx)iμfix(xxx)
  2. 规则2(变量节点到因子节点的消息):本质上与经典的和积算法一致,假设消息从变量节点 x \boldsymbol x x传递到相邻的一个因子节点 f i f_i fi,那么
    μ x → f i ( x ) ∝ b a p p ( x ) μ f i → x ( x ) (15) \mu_{\boldsymbol x \rightarrow f_i}(\boldsymbol x) \propto \frac{b_{app}(\pmb x)}{\mu_{f_i \rightarrow \boldsymbol x}(\pmb x)} \tag{15} μxfi(x)μfix(xxx)bapp(xxx)(15)
  3. 规则3(因子节点到变量节点的消息):本质上与经典的和积算法一致,假设消息从因子节点 f f f传递到相邻的一个变量节点 x i \boldsymbol x_i xi,那么
    μ f → x i ( x i ) ∝ ∫ f ( x i , { x j } j ≠ i ) ∏ j ≠ i μ x j → f d x j (16) \mu_{f \rightarrow \boldsymbol x_i} (\boldsymbol x_i) \propto \int f(\boldsymbol x_i,{\{ \boldsymbol x_j \}}_{j \neq i}) \prod_{j \neq i} \mu_{\boldsymbol x_j \rightarrow f} \text{d} \boldsymbol x_j \tag{16} μfxi(xi)f(xi,{xj}j=i)j=iμxjfdxj(16)

在下面的推导中,我们使用索引 k k k表示第 k k k次迭代,用 n n n表示向量的第 n n n个元素。

第一步(初始化) k = 0 k=0 k=0时,初始化消息 μ δ → x 1 ( x 1 ) = N ( x 1 ; r 10 , γ 10 − 1 I ) \mu_{\delta \rightarrow \boldsymbol x_1}(\boldsymbol x_1) =\mathcal N(\boldsymbol x_1; \boldsymbol r_{10}, {\gamma_{10}}^{-1} \boldsymbol I) μδx1(x1)=N(x1;r10,γ101I),以下几个步骤交替迭代(for k = 0 , 1 , … k=0,1,\ldots k=0,1,

第二步( x 1 \boldsymbol x_1 x1处的信念估计):变量节点 x 1 \boldsymbol x_1 x1在和积算法操作下的真实信念为 b s p ( x 1 ) ∝ p ( x 1 ) N ( x 1 ; r 1 k , γ 1 k − 1 I ) b_{sp}(\boldsymbol x_1) \propto p(\boldsymbol x_1) \mathcal N(\boldsymbol x_1; \boldsymbol r_{1k}, {\gamma_{1k}}^{-1} \boldsymbol I) bsp(x1)p(x1)N(x1;r1k,γ1k1I),其均值为 x ^ 1 k = E [ x 1 ∣ b s p ( x 1 ) ] \hat {\boldsymbol x}_{1k} =\mathbb E[\boldsymbol x_1 | b_{sp}(\boldsymbol x_1)] x^1k=E[x1bsp(x1)],”平均方差“为 η 1 k − 1 = < diag ( Cov [ x 1 ∣ b s p ( x 1 ) ] ) > \eta_{1k}^{-1}=<\text{diag}(\text{Cov}[\boldsymbol x_1|b_{sp}(\boldsymbol x_1)])> η1k1=<diag(Cov[x1bsp(x1)])>(”平均方差“这个概念只是为了好叙述,实质上表示的是该分布协方差矩阵对角元素的均值)。进一步使用估计信念 b a p p ( x 1 ) = N ( x 1 ; x ^ 1 k , η 1 k − 1 I ) b_{app}(\boldsymbol x_1)=\mathcal N(\boldsymbol x_1;\hat {\boldsymbol x}_{1k},\eta_{1k}^{-1} \pmb I) bapp(x1)=N(x1;x^1k,η1k1III)来近似,联合式(9)(滤波函数使用MMSE准则),可以写出
{ [ x ^ 1 k ] n = g 1 ( r k n , γ k ) η 1 k − 1 = γ 1 k − 1 g 1 ′ ( r k n , γ k ) (17) \begin{cases} [\hat {\boldsymbol x}_{1k}]_n =\mathrm{g}_1\left(r_{kn},\gamma _k \right) \\ \eta_{1k}^{-1} = {\gamma_{1k}}^{-1}{\mathrm{g}_1}^{\prime}\left(r_{kn},\gamma _k \right) \\ \end{cases} \tag{17} {[x^1k]n=g1(rkn,γk)η1k1=γ1k1g1(rkn,γk)(17)
第三步(消息传递):从变量节点 x 1 \boldsymbol x_1 x1到因子节点 δ \delta δ的消息为
μ x 1 → δ ( x 1 ) ∝ N ( x 1 ; x ^ 1 k , η 1 k − 1 I ) N ( x 1 ; r 1 k , γ 1 k − 1 I ) (18) \mu_{\boldsymbol x_1 \rightarrow \delta}(\boldsymbol x_1) \propto \frac{\mathcal N(\boldsymbol x_1;\hat {\boldsymbol x}_{1k},\eta_{1k}^{-1} \pmb I)}{\mathcal N(\boldsymbol x_1; \boldsymbol r_{1k}, {\gamma_{1k}}^{-1} \boldsymbol I)} \tag{18} μx1δ(x1)N(x1;r1k,γ1k1I)N(x1;x^1k,η1k1III)(18)
又因为
N ( x ; x ^ , η − 1 I ) N ( x ; r , γ − 1 I ) ∝ N ( x ; ( x ^ η − r γ ) / ( η − γ ) , ( η − γ ) − 1 I ) (19) \frac{\mathcal N(\boldsymbol x; \hat{\boldsymbol x},\eta^{-1}\pmb I)}{\mathcal N(\boldsymbol x; \boldsymbol r,\gamma^{-1}\pmb I)} \propto \mathcal N(\boldsymbol x; (\hat {\boldsymbol x} \eta - \boldsymbol r \gamma)/(\eta-\gamma),({\eta - \gamma)}^{-1} \pmb I) \tag{19} N(x;r,γ1III)N(x;x^,η1III)N(x;(x^ηrγ)/(ηγ),(ηγ)1III)(19)
将式(18)带入到式(19)中,得到 μ x 1 → δ ( x 1 ) = N ( x 1 ; r 2 k , γ 2 k − 1 I ) \mu_{\boldsymbol x_1 \rightarrow \delta}(\boldsymbol x_1)=\mathcal N(\boldsymbol x_1;\boldsymbol r_{2k}, {\gamma_{2k}}^{-1} \pmb I) μx1δ(x1)=N(x1;r2k,γ2k1III),其中
{ r 2 k = ( x ^ 1 k η 1 k − r 1 k γ 1 k ) / ( η 1 k − γ 1 k ) γ 2 k = η 1 k − γ 1 k (20) \begin{cases} \boldsymbol r_{2k}={(\hat {\boldsymbol x}_{1k} \eta_{1k} - \boldsymbol r_{1k} \gamma_{1k})} / {(\eta_{1k} - \gamma_{1k})} \\ \gamma_{2k}^{} = \eta_{1k} - \gamma_{1k}\\ \end{cases} \tag{20} {r2k=(x^1kη1kr1kγ1k)/(η1kγ1k)γ2k=η1kγ1k(20)
进一步,从因子节点 δ \delta δ到变量节点 x 2 \boldsymbol x_2 x2的消息为
μ δ → x 2 ( x 2 ) = ∫ δ ( x 1 − x 2 ) μ x 1 → δ ( x 1 ) d x 1 = μ x 1 → δ ( x 2 ) (21) \mu_{\delta \rightarrow \boldsymbol x_2}(\boldsymbol x_2) = \int \delta(\boldsymbol x_1 - \boldsymbol x_2) \mu_{\boldsymbol x_1 \rightarrow \delta}(\boldsymbol x_1) \text{d} \boldsymbol x_1 = \mu_{\boldsymbol x_1 \rightarrow \delta}(\boldsymbol x_2) \tag{21} μδx2(x2)=δ(x1x2)μx1δ(x1)dx1=μx1δ(x2)(21)
因此, μ δ → x 2 ( x 2 ) = N ( x 2 ; r 2 k , γ 2 k − 1 I ) \mu_{\delta \rightarrow \boldsymbol x_2}(\boldsymbol x_2) = \mathcal N(\boldsymbol x_2;\boldsymbol r_{2k}, {\gamma_{2k}}^{-1} \pmb I) μδx2(x2)=N(x2;r2k,γ2k1III)
第四步( x 2 \boldsymbol x_2 x2处的信念估计):类似第二步,在变量节点 x 2 \boldsymbol x_2 x2处的真实信念为 b s p ( x 2 ) ∝ N ( x 2 ; r 2 k , γ 2 k − 1 I ) N ( y ; A x 2 , γ ω − 1 I ) b_{sp}(\boldsymbol x_2) \propto \mathcal N(\boldsymbol x_2;\boldsymbol r_{2k}, {\gamma_{2k}}^{-1} \pmb I) \mathcal N(\boldsymbol y; \boldsymbol {Ax}_2, {\gamma_\omega}^{-1} \pmb I) bsp(x2)N(x2;r2k,γ2k1III)N(y;Ax2,γω1III),其均值和方差分别为
{ x ^ 2 k = ( γ ω A T A + γ 2 k I ) − 1 ( γ ω A T y + γ 2 k + r 2 k ) Cov [ x 2 ∣ b s p ( x 2 ) ] = ( γ ω A T A + γ 2 k I ) − 1 (22) \begin{cases} \hat{\boldsymbol x}_{2k} = {\left( \gamma_\omega \boldsymbol A^T \boldsymbol A + \gamma_{2k} \pmb I \right)}^{-1} \left( \gamma_\omega \boldsymbol A^T \boldsymbol y + \gamma_{2k}+\boldsymbol r_{2k} \right) \\ \text{Cov}[\boldsymbol x_2|b_{sp}(\boldsymbol x_2)] = {\left( \gamma_\omega \boldsymbol A^T \boldsymbol A + \gamma_{2k} \pmb I \right)}^{-1}\\ \end{cases} \tag{22} x^2k=(γωATA+γ2kIII)1(γωATy+γ2k+r2k)Cov[x2bsp(x2)]=(γωATA+γ2kIII)1(22)
依据规则一,令 x 2 \boldsymbol x_2 x2处的估计信念为 N ( x 2 ; x ^ 2 k , η 2 k − 1 I ) \mathcal N(\boldsymbol x_2;\hat {\boldsymbol x}_{2k}, {\eta}^{-1}_{2k} \pmb I) N(x2;x^2k,η2k1III),则 x ^ 2 k \hat {\boldsymbol x}_{2k} x^2k直接可得, η 2 k − 1 = < diag ( Cov [ x 2 ∣ b s p ( x 2 ) ] ) > {\eta}^{-1}_{2k}=<\text{diag}(\text{Cov}[\boldsymbol x_2|b_{sp}(\boldsymbol x_2)])> η2k1=<diag(Cov[x2bsp(x2)])>

g 2 ( r 2 k , γ 2 k ) ≔ ( γ ω A T A + γ 2 k I ) − 1 ( γ ω A T y + γ 2 k + r 2 k ) (23) \pmb {\mathrm{g}}_2 (\boldsymbol r_{2k},\gamma_{2k}) \coloneqq {\left( \gamma_\omega \boldsymbol A^T \boldsymbol A + \gamma_{2k} \pmb I \right)}^{-1} \left( \gamma_\omega \boldsymbol A^T \boldsymbol y + \gamma_{2k}+\boldsymbol r_{2k} \right) \tag{23} ggg2(r2k,γ2k):=(γωATA+γ2kIII)1(γωATy+γ2k+r2k)(23)
并且有
< g 2 ′ ( r 2 k , γ 2 k ) > = γ 2 k N Tr [ ( γ ω A T A + γ 2 k I ) − 1 ] (24) <\pmb {\mathrm{g}}^{\prime}_2 (\boldsymbol r_{2k},\gamma_{2k})>=\frac{\gamma_{2k}}{N}\text{Tr}\left[ {\left( \gamma_\omega \boldsymbol A^T \boldsymbol A + \gamma_{2k} \pmb I \right)}^{-1} \right] \tag{24} <ggg2(r2k,γ2k)>=Nγ2kTr[(γωATA+γ2kIII)1](24)
类似于式(17),可以写出
{ x ^ 2 k = g 2 ( r 2 k , γ 2 k ) η 2 k − 1 = γ 2 k − 1 < g 2 ′ ( r 2 k , γ 2 k ) > (25) \begin{cases} \hat{\boldsymbol x}_{2k} =\pmb {\mathrm{g}}_2 (\boldsymbol r_{2k},\gamma_{2k}) \\ \eta_{2k}^{-1} = {\gamma_{2k}}^{-1}<\pmb {\mathrm{g}}^{\prime}_2 (\boldsymbol r_{2k},\gamma_{2k})> \\ \end{cases} \tag{25} {x^2k=ggg2(r2k,γ2k)η2k1=γ2k1<ggg2(r2k,γ2k)>(25)
第五步(消息传递):类似于第三步,从变量节点 x 2 \boldsymbol x_2 x2传递到因子节点 δ \delta δ的消息为
μ x 2 → δ ( x 2 ) ∝ N ( x 2 ; x ^ 2 k , η 2 k − 1 I ) N ( x 2 ; r 2 k , γ 2 k − 1 I ) (26) \mu_{\boldsymbol x_2 \rightarrow \delta}(\boldsymbol x_2) \propto \frac{\mathcal N(\boldsymbol x_2;\hat {\boldsymbol x}_{2k},\eta_{2k}^{-1} \pmb I)}{\mathcal N(\boldsymbol x_2; \boldsymbol r_{2k}, {\gamma_{2k}}^{-1} \boldsymbol I)} \tag{26} μx2δ(x2)N(x2;r2k,γ2k1I)N(x2;x^2k,η2k1III)(26)
μ x 2 → δ ( x 2 ) = N ( x 2 ; r 1 , k + 1 , γ 1 , k + 1 − 1 I ) \mu_{\boldsymbol x_2 \rightarrow \delta}(\boldsymbol x_2)=\mathcal N(\boldsymbol x_2 ; \boldsymbol r_{1,k+1},\gamma^{-1}_{1,k+1} \pmb I) μx2δ(x2)=N(x2;r1,k+1,γ1,k+11III),联合式(19)和式(26)可得
{ r 1 , k + 1 = ( x ^ 2 k η 2 k − r 2 k γ 2 k ) / ( η 2 k − γ 2 k ) γ 1 , k + 1 = η 2 k − γ 2 k (27) \begin{cases} \boldsymbol r_{1,k+1}={(\hat {\boldsymbol x}_{2k} \eta_{2k} - \boldsymbol r_{2k} \gamma_{2k})} / {(\eta_{2k} - \gamma_{2k})} \\ \gamma_{1,k+1}^{} = \eta_{2k} - \gamma_{2k}\\ \end{cases} \tag{27} {r1,k+1=(x^2kη2kr2kγ2k)/(η2kγ2k)γ1,k+1=η2kγ2k(27)
而从因子节点 δ \delta δ传递到变量节点 x 1 \boldsymbol x_1 x1的消息与 μ x 2 → δ ( x 2 ) \mu_{\boldsymbol x_2 \rightarrow \delta}(\boldsymbol x_2) μx2δ(x2)是一致的。整个消息传递过程和信念估计操作依次迭代直至收敛。

总结:初始化因子节点 δ \delta δ到变量节点 x 1 \boldsymbol x_1 x1的消息后,首先计算变量节点 x 1 \boldsymbol x_1 x1的估计信念;然后将消息传递至 x 2 \boldsymbol x_2 x2,类似地计算变量节点 x 2 \boldsymbol x_2 x2的估计信念,这样依次迭代直至收敛。

对矩阵 A \boldsymbol A A做SVD分解,代入到Algorithm-3 (LMMSE Form)中,可以得到另一个等效的简化形式(尤其是简化了矩阵求逆!):

  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 23
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值