AMP State Evolution的计算:以指数分布先验为例(AWGN)

信号模型

对于AWGN模型:
y = x + w (1) y = x + w \tag{1} y=x+w(1)

我们考虑

  • x x x的先验分布为伯努利-指数分布,即 p ( x ) = ( 1 − ρ ) ⋅ δ ( x ) + ρ ⋅ λ e − λ x 1 x ≥ 0 p(x)=(1-\rho) \cdot \delta(x) + \rho \cdot \lambda e^{- \lambda x} \mathbf 1_{x\geq0} p(x)=(1ρ)δ(x)+ρλeλx1x0
  • w w w的分布为 w ∼ N ( 0 , τ 2 ) w \sim \mathcal N(0, \tau^2) wN(0,τ2)

基于上述信息,我们可以计算 X , Y X,Y X,Y的联合分布
p ( x , y ) = p ( x ) ⋅ p ( y ∣ x ) = ( ( 1 − ρ ) ⋅ δ ( x ) + ρ ⋅ λ e − λ x 1 x ≥ 0 ) ⋅ N ( y − x ; 0 , τ 2 ) (2) p(x,y) = p(x) \cdot p(y|x) = \left ( (1-\rho) \cdot \delta(x) + \rho \cdot \lambda e^{- \lambda x} \mathbf 1_{x\geq0} \right) \cdot \mathcal N(y-x; 0, \tau^2) \tag{2} p(x,y)=p(x)p(yx)=((1ρ)δ(x)+ρλeλx1x0)N(yx;0,τ2)(2)

进一步,可以计算Y的边际分布,令 m ( y ) = y − λ τ 2 m(y)=y -\lambda \tau^2 m(y)=yλτ2
p ( y ) = ∫ p ( x , y ) d x = ∫ ( ( 1 − ρ ) ⋅ δ ( x ) + ρ ⋅ λ e − λ x ) ⋅ N ( y − x ; 0 , τ 2 ) d x = ( 1 − ρ ) ∫ δ ( x ) N ( y ; x , τ 2 ) d x + ρ ⋅ λ ∫ 0 ∞ e − λ x ⋅ 1 2 π τ 2 e − ( x − y ) 2 2 τ 2 d x = ( 1 − ρ ) N ( y ; 0 , τ 2 ) + ρ ⋅ λ ⋅ e − 2 λ y + λ 2 τ 2 2 ∫ 0 ∞ 1 2 π τ 2 e − ( x − ( y − λ τ 2 ) ) 2 2 τ 2 d x = ( 1 − ρ ) N ( y ; 0 , τ 2 ) + ρ ⋅ λ ⋅ e − 2 λ y + λ 2 τ 2 2 ( 1 − Φ ( − ( y − λ τ 2 ) τ ) ) = ( 1 − ρ ) N ( y ; 0 , τ 2 ) + ρ λ e − λ 2 τ 2 2 ⋅ e − λ m ( y ) ( 1 − Φ ( − m ( y ) τ ) ) (3) \begin{aligned} p(y) &= \int p(x,y) dx \\ &= \int \left ( (1-\rho) \cdot \delta(x) + \rho \cdot \lambda e^{- \lambda x} \right) \cdot \mathcal N(y-x; 0, \tau^2) dx \\ &= (1-\rho) \int \delta(x) \mathcal N(y; x, \tau^2) \mathrm {d} x+ \rho \cdot \lambda \int_{0}^{\infty} e^{- \lambda x} \cdot \frac{1}{\sqrt{2 \pi \tau^2}} e^{ -\frac{(x-y)^2}{2 \tau^2} } \mathrm {d} x \\ & = (1- \rho) \mathcal N(y; 0, \tau^2) + \rho \cdot \lambda \cdot e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi \tau^2}} e^{ - \frac{ \left( x - (y -\lambda \tau^2)\right)^2 }{ 2 \tau^2} } \mathrm {d} x \\ & = (1- \rho) \mathcal N(y; 0, \tau^2) + \rho \cdot \lambda \cdot e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \left( 1 - \Phi \left (-\frac{(y -\lambda \tau^2)}{\tau} \right) \right ) \\ &= (1- \rho) \mathcal N(y; 0, \tau^2) + \rho \lambda e^{-\frac{\lambda^2 \tau^2}{2}} \cdot e^{- \lambda m(y)} \left( 1 - \Phi \left (-\frac{m(y)}{\tau} \right) \right ) \end{aligned} \tag{3} p(y)=p(x,y)dx=((1ρ)δ(x)+ρλeλx)N(yx;0,τ2)dx=(1ρ)δ(x)N(y;x,τ2)dx+ρλ0eλx2πτ2 1e2τ2(xy)2dx=(1ρ)N(y;0,τ2)+ρλe22λy+λ2τ202πτ2 1e2τ2(x(yλτ2))2dx=(1ρ)N(y;0,τ2)+ρλe22λy+λ2τ2(1Φ(τ(yλτ2)))=(1ρ)N(y;0,τ2)+ρλe2λ2τ2eλm(y)(1Φ(τm(y)))(3)

若记
β 0 ( y ) = ( 1 − ρ ) N ( y ; 0 , τ 2 ) β 1 ( y ) = c ⋅ e − λ m ( y ) ( 1 − Φ ( − m ( y ) τ ) ) \begin{aligned} \beta_0(y) &=(1- \rho) \mathcal N(y; 0, \tau^2) \\ \beta_1(y) &= c \cdot e^{- \lambda m(y)} \left( 1 - \Phi \left (-\frac{m(y)}{\tau} \right) \right ) \end{aligned} β0(y)β1(y)=(1ρ)N(y;0,τ2)=ceλm(y)(1Φ(τm(y)))

其中 c = ρ λ e − λ 2 τ 2 2 c=\rho \lambda e^{-\frac{\lambda^2 \tau^2}{2}} c=ρλe2λ2τ2,则 p ( y ) = β 0 ( y ) + c ⋅ β 1 ( y ) p(y) =\beta_0(y) + c \cdot \beta_1(y) p(y)=β0(y)+cβ1(y)

后验均值和后验方差的推导

我们想要求后验均值 E [ x ∣ y ] \mathbb E[x|y] E[xy],即
E [ x ∣ y ] = 1 p ( y ) ∫ x ⋅ p ( x , y ) d x = 1 p ( y ) ⋅ ρ ⋅ λ ⋅ e − 2 λ y + λ 2 τ 2 2 ∫ 0 ∞ x 1 2 π τ 2 e − ( x − ( y − λ τ 2 ) ) 2 2 τ 2 d x = 1 p ( y ) ⋅ ρ ⋅ λ ⋅ e − 2 λ y + λ 2 τ 2 2 ⋅ ( 1 − Φ ( − ( y − λ τ 2 ) τ ) ) ⋅ ∫ 0 ∞ x f ( x ; y − λ τ 2 , τ , 0 ) d x = ρ λ ⋅ 1 p ( y ) e − 2 λ y + λ 2 τ 2 2 ⋅ ( 1 − Φ ( − ( y − λ τ 2 ) τ ) ) ⋅ { ( y − λ τ 2 ) + τ φ ( − ( y − λ τ 2 ) τ ) 1 − Φ ( − ( y − λ τ 2 ) τ ) } = 1 p ( y ) ⋅ ρ λ e − λ 2 τ 2 2 ⋅ ( 1 − Φ ( − m ( y ) τ ) ) ⋅ { m ( y ) e − λ m ( y ) + τ e − λ m ( y ) φ ( − m ( y ) τ ) 1 − Φ ( − m ( y ) τ ) } (4) \begin{aligned} \mathbb E[x|y] &= \frac{1}{p(y)} \int x \cdot p(x,y) \mathrm {d} x \\ &= \frac{1}{p(y)} \cdot \rho \cdot \lambda \cdot e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \int_{0}^{\infty} x \frac{1}{\sqrt{2 \pi \tau^2}} e^{ - \frac{ \left( x - (y -\lambda \tau^2)\right)^2 }{ 2 \tau^2} } \mathrm {d} x \\ & = \frac{1}{p(y)} \cdot \rho \cdot \lambda \cdot e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \cdot \left ( {1 - \Phi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)} \right ) \cdot \int_{0}^{\infty} x f(x;y -\lambda \tau^2, \tau, 0) \mathrm dx \\ &=\rho \lambda \cdot \frac{1}{p(y)} e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \cdot \left( {1 - \Phi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)} \right) \cdot \left \{ \left(y -\lambda \tau^2\right) + \tau \frac{\varphi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)}{1 - \Phi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)} \right \} \\ & = \frac{1}{p(y)} \cdot \rho \lambda e^{-\frac{\lambda^2 \tau^2}{2}} \cdot \left( {1 - \Phi\left(-\frac{m(y)}{\tau}\right)} \right) \cdot \left \{ m(y) e^{- \lambda m(y)} + \tau e^{- \lambda m(y)} \frac{\varphi\left(-\frac{m(y)}{\tau}\right)}{1 - \Phi\left(-\frac{m(y)}{\tau}\right)} \right \} \end{aligned} \tag{4} E[xy]=p(y)1xp(x,y)dx=p(y)1ρλe22λy+λ2τ20x2πτ2 1e2τ2(x(yλτ2))2dx=p(y)1ρλe22λy+λ2τ2(1Φ(τ(yλτ2)))0xf(x;yλτ2,τ,0)dx=ρλp(y)1e22λy+λ2τ2(1Φ(τ(yλτ2))) (yλτ2)+τ1Φ(τ(yλτ2))φ(τ(yλτ2)) =p(y)1ρλe2λ2τ2(1Φ(τm(y))) m(y)eλm(y)+τeλm(y)1Φ(τm(y))φ(τm(y)) (4)

其中 f f f表示截断高斯分布,见附录-A,进一步我们计算后验二阶矩:
E [ x 2 ∣ y ] = 1 p ( y ) ∫ x 2 ⋅ p ( x , y ) d x = 1 p ( y ) ⋅ ρ ⋅ λ ⋅ e − 2 λ y + λ 2 τ 2 2 ∫ 0 ∞ x 2 1 2 π τ 2 e − ( x − ( y − λ τ 2 ) ) 2 2 τ 2 d x = 1 p ( y ) ⋅ ρ ⋅ λ ⋅ e − 2 λ y + λ 2 τ 2 2 ⋅ ( 1 − Φ ( − ( y − λ τ 2 ) τ ) ) ⋅ ∫ 0 ∞ x 2 f ( x ; y − λ τ 2 , τ , 0 ) d x = 1 p ( y ) ⋅ ρ ⋅ λ ⋅ e − 2 λ y + λ 2 τ 2 2 ⋅ ( 1 − Φ ( − ( y − λ τ 2 ) τ ) ) ⋅ ( ( y − λ τ 2 ) 2 + τ 2 + ( y − λ τ 2 ) τ φ ( − ( y − λ τ 2 ) τ ) 1 − Φ ( − ( y − λ τ 2 ) τ ) ) = 1 p ( y ) ⋅ ρ λ e − λ 2 τ 2 2 ⋅ ( 1 − Φ ( − m ( y ) τ ) ) ⋅ ( m ( y ) 2 e − λ m ( y ) + τ 2 e − λ m ( y ) + τ m ( y ) e − λ m ( y ) ⋅ φ ( − m ( y ) τ ) 1 − Φ ( − m ( y ) τ ) ) (5) \begin{aligned} \mathbb E[x^2|y] &= \frac{1}{p(y)} \int x^2 \cdot p(x,y) \mathrm {d} x \\ &= \frac{1}{p(y)} \cdot \rho \cdot \lambda \cdot e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \int_{0}^{\infty} x^2 \frac{1}{\sqrt{2 \pi \tau^2}} e^{ - \frac{ \left( x - (y -\lambda \tau^2)\right)^2 }{ 2 \tau^2} } \mathrm {d} x \\ & = \frac{1}{p(y)} \cdot \rho \cdot \lambda \cdot e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \cdot \left ( {1 - \Phi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)} \right ) \cdot \int_{0}^{\infty} x^2 f(x;y -\lambda \tau^2, \tau, 0) \mathrm dx \\ &= \frac{1}{p(y)} \cdot \rho \cdot \lambda \cdot e^{ \frac{-2\lambda y+\lambda^2 \tau^2}{2 } } \cdot \left ( {1 - \Phi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)} \right ) \cdot \left ( (y -\lambda \tau^2)^2 + \tau^2 + (y -\lambda \tau^2) \tau \frac{\varphi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)}{1 - \Phi\left(\frac{-\left(y -\lambda \tau^2\right)}{\tau}\right)} \right ) \\ &= \frac{1}{p(y)} \cdot \rho \lambda e^{-\frac{\lambda^2 \tau^2}{2}} \cdot \left( {1 - \Phi\left(-\frac{m(y)}{\tau}\right)} \right) \cdot \left ( m(y)^2 e^{- \lambda m(y)} + \tau^2 e^{- \lambda m(y)} + \tau m(y) e^{- \lambda m(y)} \cdot \frac{\varphi\left(-\frac{m(y)}{\tau}\right)}{1 - \Phi\left(-\frac{m(y)}{\tau}\right)} \right) \end{aligned} \tag{5} E[x2y]=p(y)1x2p(x,y)dx=p(y)1ρλe22λy+λ2τ20x22πτ2 1e2τ2(x(yλτ2))2dx=p(y)1ρλe22λy+λ2τ2(1Φ(τ(yλτ2)))0x2f(x;yλτ2,τ,0)dx=p(y)1ρλe22λy+λ2τ2(1Φ(τ(yλτ2))) (yλτ2)2+τ2+(yλτ2)τ1Φ(τ(yλτ2))φ(τ(yλτ2)) =p(y)1ρλe2λ2τ2(1Φ(τm(y))) m(y)2eλm(y)+τ2eλm(y)+τm(y)eλm(y)1Φ(τm(y))φ(τm(y)) (5)

我们可以把(4,5)写为
E [ x ∣ y ] = c β 1 ( y ) p ( y ) { m ( y ) + τ φ ( − m ( y ) τ ) 1 − Φ ( − m ( y ) τ ) } = c β 1 ( y ) p ( y ) t 1 ( y ) E [ x 2 ∣ y ] = c β 1 ( y ) p ( y ) { m ( y ) 2 + τ 2 + τ m ( y ) ⋅ φ ( − m ( y ) τ ) 1 − Φ ( − m ( y ) τ ) } = c β 1 ( y ) p ( y ) t 2 ( y ) \begin{aligned} \mathbb E[x|y] &= c \frac{\beta_1(y)}{p(y)} \left \{ m(y) + \tau \frac{\varphi\left(-\frac{m(y)}{\tau}\right)}{1 - \Phi\left(-\frac{m(y)}{\tau}\right)} \right \} = c \frac{\beta_1(y)}{p(y)} t_1(y)\\ \mathbb E[x^2|y] &= c \frac{\beta_1(y)}{p(y)} \left \{ m(y)^2 + \tau^2 + \tau m(y) \cdot \frac{\varphi\left(-\frac{m(y)}{\tau}\right)}{1 - \Phi\left(-\frac{m(y)}{\tau}\right)} \right \} = c \frac{\beta_1(y)}{p(y)} t_2(y) \end{aligned} E[xy]E[x2y]=cp(y)β1(y) m(y)+τ1Φ(τm(y))φ(τm(y)) =cp(y)β1(y)t1(y)=cp(y)β1(y) m(y)2+τ2+τm(y)1Φ(τm(y))φ(τm(y)) =cp(y)β1(y)t2(y)

联合式(4)和式(5),我们可以得到 X ∣ Y X|Y XY对应的后验方差,即
v a r [ x ∣ y ] = E [ x 2 ∣ y ] − E [ x ∣ y ] 2 \begin{aligned} \mathrm{var}[x|y] &= \mathbb E[x^2|y] - \mathbb E[x|y]^2 \\ \end{aligned} var[xy]=E[x2y]E[xy]2

贝叶斯MMSE的计算和数值仿真

贝叶斯MMSE为
m m s e ( τ 2 ) = ∫ v a r [ x ∣ y ] p ( y ) d y = ∫ β 1 ( y ) p ( y ) { c t 2 ( y ) − c 2 t 1 2 ( y ) } p ( y ) d y = ∫ β 1 ( y ) { c t 2 ( y ) − c 2 β 1 ( y ) p ( y ) t 1 2 ( y ) } d y = c ∫ β 1 ( y ) t 2 ( y ) d y − c 2 ∫ β 1 ( y ) p ( y ) t 1 2 ( y ) d y \begin{aligned} mmse(\tau^2) &= \int \mathrm{var}[x|y] p(y) \mathrm d y \\ &=\int \frac{\beta_1(y)}{p(y)} \left \{ c t_2(y) - c^2 t_1^2(y) \right \} p(y) \mathrm d y \\ &=\int {\beta_1(y)} \left \{ c t_2(y) - c^2 \frac{\beta_1(y)}{p(y)} t_1^2(y) \right \} \mathrm d y \\ &= c \int {\beta_1(y)} t_2(y) \mathrm d y - c^2 \int \frac{\beta_1(y)}{p(y)} t_1^2(y) \mathrm d y \end{aligned} mmse(τ2)=var[xy]p(y)dy=p(y)β1(y){ct2(y)c2t12(y)}p(y)dy=β1(y){ct2(y)c2p(y)β1(y)t12(y)}dy=cβ1(y)t2(y)dyc2p(y)β1(y)t12(y)dy

% basic parameters
rho = 0.2; lambda = 0.5; tau2 = 0.1;

normpdf = @(z) exp(-0.5 * z.^2) ./ sqrt(2 * pi);
normcdf = @(z) 0.5 * (1 + erf(z ./ sqrt(2)));

tau = sqrt(tau2);
mu_y = @(y) y - lambda * tau2;
alpha = @(y) -mu_y(y) ./ tau;

constant = rho * lambda * exp(-lambda^2 * tau2 / 2);

beta_1 = @(y) exp(-lambda * mu_y(y)) .* (1 - normcdf(alpha(y)));

p_y = @(y) (1-rho) .* normpdf(y./tau) ./ tau + ...
    rho .* lambda .* exp( (-2*lambda*y + lambda^2 * tau2) ./ 2 ) .* ...
    (1 - normcdf(alpha(y) ) );

t2_y = @(y) mu_y(y).^2 + tau2 + tau * mu_y(y) .* normpdf(alpha(y)) ./ (1-normcdf(alpha(y)));

t1_y = @(y) mu_y(y) + tau * normpdf(alpha(y)) ./ (1-normcdf(alpha(y)));

integral_1stTerm = @(y) beta_1(y) .* t2_y(y);
integral_2ndTerm = @(y) beta_1(y).^2 ./ p_y(y) .* t1_y(y).^2;

% find the beginning of integration
% if the beginning start from -inf, it suffers from numerical problem..
% as the mse is too small for MATLAB.
step = 0;
step_size = 0.01;
while true
    if constant^2 * integral_2ndTerm(step) < 1e-8
        lim_start = step ;
        break
    elseif step < -100
        lim_start = -100;
        break;
    else
        step = step - step_size;
    end 
end

%lim_start,
mse_1stTerm = constant * integral(integral_1stTerm, lim_start, 60);

mse_2ndTerm = constant^2 * integral(integral_2ndTerm, lim_start, 60);

bayesianMSE = mse_1stTerm - mse_2ndTerm;

验证

利用AMP算法与State evolution在MSE上的一致性,在大系统极限下,如果经过AMP得到的MSE与经过State evolution得到的MSE一致,那么认为结论是争取的。

截断高斯分布

假设 x ∼ N ( μ , σ 2 ) x \sim \mathcal N(\mu, \sigma^2) xN(μ,σ2),高斯分布在 ( a , ∞ ) (a, \infty) (a,)处截断,那么阶段高斯的分布可以写为:
f ( x ; μ , σ , a ) = 1 σ φ ( x − μ σ ) 1 − Φ ( a − μ σ ) f(x;\mu,\sigma,a) = \frac{1}{\sigma} \frac{ \varphi \left ( \frac{x-\mu}{\sigma} \right) }{1 - \Phi \left( \frac{a-\mu}{\sigma} \right)} f(x;μ,σ,a)=σ11Φ(σaμ)φ(σxμ)
其中
φ ( ξ ) = 1 2 π e − 1 2 ξ 2 \varphi(\xi) = \frac{1}{\sqrt{2 \pi}} e^{ -\frac{1}{2} \xi^2 } φ(ξ)=2π 1e21ξ2

α = a − μ σ \alpha=\frac{a-\mu}{\sigma} α=σaμ Z = 1 − Φ ( α ) Z=1-\Phi(\alpha) Z=1Φ(α),则我们可以得到均值和方差
E f [ x ] = μ + σ φ ( α ) Z v a r f [ x ] = σ 2 ( 1 + α φ ( α ) Z − ( φ ( α ) Z ) 2 ) \begin{aligned} \mathbb E_f[x] &= \mu + \sigma \frac{\varphi(\alpha)}{Z} \\ \mathrm var_f[x] &= \sigma^2 \left ( 1 + \frac{\alpha \varphi(\alpha)}{Z} - \left( \frac{\varphi(\alpha)}{Z} \right)^2 \right) \end{aligned} Ef[x]varf[x]=μ+σZφ(α)=σ2(1+Zαφ(α)(Zφ(α))2)

借此,我们可以得到二阶矩为
E f [ x 2 ] = E f [ x ] 2 + v a r f [ x ] = ( μ + σ φ ( α ) Z ) 2 + σ 2 ( 1 + α φ ( α ) Z − ( φ ( α ) Z ) 2 ) = μ 2 + σ 2 + ( 2 μ σ + α σ 2 ) φ ( α ) Z = μ 2 + σ 2 + σ ( μ + a ) φ ( α ) Z \begin{aligned} \mathbb E_f[x^2] &= \mathbb E_f[x]^2 + \mathrm var_f[x] \\ &= \left( \mu + \sigma \frac{\varphi(\alpha)}{Z} \right)^2 + \sigma^2 \left ( 1 + \frac{\alpha \varphi(\alpha)}{Z} - \left( \frac{\varphi(\alpha)}{Z} \right)^2 \right) \\ &= \mu^2 + \sigma^2 + (2 \mu \sigma + \alpha \sigma^2) \frac{\varphi(\alpha)}{Z} \\ &= \mu^2 + \sigma^2 + \sigma(\mu + a ) \frac{\varphi(\alpha)}{Z} \end{aligned} Ef[x2]=Ef[x]2+varf[x]=(μ+σZφ(α))2+σ2(1+Zαφ(α)(Zφ(α))2)=μ2+σ2+(2μσ+ασ2)Zφ(α)=μ2+σ2+σ(μ+a)Zφ(α)

参考资料

[1] 维基百科:截断高斯分布的相关性质

  • 26
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要生成8-PSK调制信号。假设我们要发送1000个符号,并且每个符号占用3个采样点,则可以使用以下代码生成8-PSK信号: ``` M = 8; % 8-PSK调制 k = log2(M); % 每个符号的比特数 n = 3; % 每个符号的采样点数 numSymbols = 1000; % 发送符号的数量 data = randi([0 1], numSymbols*k, 1); % 随机生成二进制数据 dataMat = reshape(data, k, []).'; % 将数据转换为矩阵形式 dataSymbols = bi2de(dataMat, 'left-msb') + 1; % 将二进制数据转换为调制符号 modSignal = pskmod(dataSymbols, M); % 生成8-PSK调制信号 txSignal = reshape(repmat(modSignal, 1, n).', [], 1); % 将信号扩展为每个符号占用n个采样点的形式 ``` 接下来,我们需要添加高斯白噪声(AWGN)信道。假设信道信噪比为Eb/No=10 dB,则可以使用以下代码添加AWGN信道: ``` EbNo = 10; % 信道信噪比(dB) snr = EbNo + 10*log10(k) - 10*log10(n); % 计算信噪比(dB) rxSignal = awgn(txSignal, snr, 'measured'); % 添加AWGN信道 ``` 最后,我们可以使用相关函数对信号进行解调和比特解码: ``` demodSignal = pskdemod(rxSignal, M); % 8-PSK解调 demodDataMat = de2bi(demodSignal - 1, k, 'left-msb'); % 将解调符号转换为二进制数据矩阵 demodData = reshape(demodDataMat.', [], 1); % 将二进制数据矩阵转换为列向量 numErrors = sum(data ~= demodData); % 统计比特错误的数量 ber = numErrors/length(data); % 计算比特错误率 ``` 完整的MATLAB代码如下: ``` M = 8; % 8-PSK调制 k = log2(M); % 每个符号的比特数 n = 3; % 每个符号的采样点数 numSymbols = 1000; % 发送符号的数量 data = randi([0 1], numSymbols*k, 1); % 随机生成二进制数据 dataMat = reshape(data, k, []).'; % 将数据转换为矩阵形式 dataSymbols = bi2de(dataMat, 'left-msb') + 1; % 将二进制数据转换为调制符号 modSignal = pskmod(dataSymbols, M); % 生成8-PSK调制信号 txSignal = reshape(repmat(modSignal, 1, n).', [], 1); % 将信号扩展为每个符号占用n个采样点的形式 EbNo = 10; % 信道信噪比(dB) snr = EbNo + 10*log10(k) - 10*log10(n); % 计算信噪比(dB) rxSignal = awgn(txSignal, snr, 'measured'); % 添加AWGN信道 demodSignal = pskdemod(rxSignal, M); % 8-PSK解调 demodDataMat = de2bi(demodSignal - 1, k, 'left-msb'); % 将解调符号转换为二进制数据矩阵 demodData = reshape(demodDataMat.', [], 1); % 将二进制数据矩阵转换为列向量 numErrors = sum(data ~= demodData); % 统计比特错误的数量 ber = numErrors/length(data); % 计算比特错误率 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值