深入理解AMP

问题深入

注意到,一方面,对于AMP算法,基于信念传播的推导方式并不容易让人直观地去理解AMP的本质,比如为什么"Onsager"项可以在迭代过程中消除估计误差与感知矩阵的相关性?另一方面,AMP的状态演进分析过于复杂,但如果能直观地理解其演化过程,那么对AMP本质意义上的理解也会更上一层楼。我们接下来将基于AMP的迭代公式和Taylor展开,进行反向分析和理解。

“Onsager”项的理解

回顾AMP的迭代公式:

感知矩阵 A ∈ R m × n \boldsymbol A \in \mathbb R^{m \times n} ARm×n,且 a i j ∼ N ( 0 , 1 / m ) a_{ij} \sim \mathcal N(0, 1/m) aijN(0,1/m),AMP的迭代式为:
Linear:  ν t = y − A x ^ t + n m ν t − 1 div ( η ( r t − 1 ) ) ⏟ Onsager term Non-linear:  x ^ t + 1 = η ( x ^ t + A T ν t ⏟ r t ) \begin{aligned} \text{Linear: } \boldsymbol \nu^t &= \boldsymbol y - \boldsymbol A \hat {\boldsymbol x}^t + \underset{\text{Onsager term}}{\underbrace{\frac{n}{m} \boldsymbol \nu^{t-1} \text{div}\left( \eta(\boldsymbol r^{t-1}) \right )}} \\ \text{Non-linear: } \hat {\boldsymbol x}^{t+1} &=\eta \left ( \underset{\boldsymbol r^t}{\underbrace{ \hat {\boldsymbol x}^t+\boldsymbol A^T \boldsymbol \nu^t }} \right ) \end{aligned} Linear: νtNon-linear: x^t+1=yAx^t+Onsager term mnνt1div(η(rt1))=ηrt x^t+ATνt

我们首先考虑 A x ^ t \boldsymbol A \hat {\boldsymbol x}^t Ax^t这一项,
[ A x ^ t ] i = a i T η ( x ^ t − 1 + ∑ l a l ν l t − 1 )  where  a i T  is the  i -th   row   of   A = a i T η ( x ^ t − 1 + ∑ l ≠ i a l ν l t − 1 ⏟ r i t − 1 + a i ν i t − 1 ) = a i T ( η ( r i t − 1 ) + ∂ η ∂ r ( r i t − 1 ) a i ν i t − 1 + O ( 1 / m ) ) Taylor   expansion = a i T η ( r i t − 1 ) + ν i t − 1 ∑ j a i j 2 η ′ ( r i j t − 1 ) + O ( 1 / m ) = a i T η ( r i t − 1 ) + n m ν i t − 1 1 n ∑ j η ′ ( r i j t − 1 ) ⏟ div ( η ( r i t − 1 ) ) + O ( 1 / m ) \begin{aligned} [\boldsymbol A \hat {\boldsymbol x}^t]_i &= \boldsymbol a^T_i \eta \left ( \hat {\boldsymbol x}^{t-1} + \sum_{l} \boldsymbol a_l \nu^{t-1}_l \right ) \text{ where } \boldsymbol a^T_i \text{ is the } i \textbf{-th row of } \boldsymbol A \\ &= \boldsymbol a^T_i \eta \left ( \underset{\boldsymbol r^{t-1}_i }{\underbrace{ \hat{\boldsymbol x}^{t-1} + \sum_{l \neq i} \boldsymbol a_l \nu^{t-1}_l }} +\boldsymbol a_i \nu^{t-1}_i \right ) \\ &= \boldsymbol a^T_i \left ( \eta (\boldsymbol r^{t-1}_i) + \frac{\partial \eta}{\partial \boldsymbol r} (\boldsymbol r^{t-1}_i) \boldsymbol a_i \nu^{t-1}_i + O(1/m) \right ) \textbf{Taylor expansion} \\ &= \boldsymbol a^T_i \eta (\boldsymbol r^{t-1}_i) + \nu^{t-1}_i \sum_{j} a^2_{ij} \eta^{\prime}(r^{t-1}_{ij}) + O(1/\sqrt m) \\ &= \boldsymbol a^T_i \eta (\boldsymbol r^{t-1}_i) +\frac{n}{m} \nu^{t-1}_i \underset{\text{div} \left( \eta(\boldsymbol r^{t-1}_i) \right ) }{\underbrace{ \frac{1}{n} \sum_{j} \eta^{\prime}(r^{t-1}_{ij})}} + O(1/\sqrt m) \end{aligned} [Ax^t]i=aiTη(x^t1+lalνlt1) where aiT is the i-th row of A=aiTηrit1 x^t1+l=ialνlt1+aiνit1=aiT(η(rit1)+rη(rit1)aiνit1+O(1/m))Taylor expansion=aiTη(rit1)+νit1jaij2η(rijt1)+O(1/m )=aiTη(rit1)+mnνit1div(η(rit1)) n1jη(rijt1)+O(1/m )

因此,
A x ^ t = A η ( r i t − 1 ) + n m ν t − 1 div ( η ( r i t − 1 ) ) + O ( 1 / m ) \boldsymbol A \hat {\boldsymbol x}^t = \boldsymbol A \eta (\boldsymbol r^{t-1}_i) + \frac{n}{m} \boldsymbol \nu^{t-1} \text{div} \left( \eta(\boldsymbol r^{t-1}_i) \right ) + O(1/\sqrt m) Ax^t=Aη(rit1)+mnνt1div(η(rit1))+O(1/m )

因此,进一步考虑 ν t \boldsymbol \nu^t νt A \boldsymbol A A之间的相关性:
ν t = a y − A x ^ t + n m ν t − 1 div ( η ( r t − 1 ) ) ⏟ Onsager term = A x 0 + w − [ A η ( r i t − 1 ) + n m ν t − 1 div ( η ( r i t − 1 ) ) ] + n m ν t − 1 div ( η ( r t − 1 ) ) ⏟ Onsager term + O ( 1 / m ) → b A ( x 0 − ( x 0 + ϵ ) ⏟ x ^ t − 1 = η ( r i t − 1 ) ) + w      {  where  η ( r i t − 1 ) → x ^ t − 1 , define  x ^ t − 1 = x 0 + ϵ } = − A ϵ + w \begin{aligned} \boldsymbol \nu^t &\overset{a}{=} \boldsymbol y - \boldsymbol A \hat {\boldsymbol x}^t + \underset{\text{Onsager term}}{\underbrace{\frac{n}{m} \boldsymbol \nu^{t-1} \text{div}\left( \eta(\boldsymbol r^{t-1}) \right )}} \\ &= \boldsymbol A \boldsymbol x_0 + \boldsymbol w - \left [ \boldsymbol A \eta (\boldsymbol r^{t-1}_i) + \frac{n}{m} \boldsymbol \nu^{t-1} \text{div} \left( \eta(\boldsymbol r^{t-1}_i) \right ) \right] + \underset{\text{Onsager term}}{\underbrace{\frac{n}{m} \boldsymbol \nu^{t-1} \text{div}\left( \eta(\boldsymbol r^{t-1}) \right )}} + O(1/\sqrt m) \\ &\overset{b}{\rightarrow} \boldsymbol A ( \boldsymbol x_0 - \underset{\hat{\boldsymbol x}^{t-1}=\eta(\boldsymbol r^{t-1}_i) }{\underbrace{(\boldsymbol x_0 + \boldsymbol \epsilon)}}) + \boldsymbol w \ \ \ \ \{\text{ where } \eta(\boldsymbol r^{t-1}_i) \rightarrow \hat{\boldsymbol x}^{t-1} \text{, define } \hat{\boldsymbol x}^{t-1} = \boldsymbol x_0 + \boldsymbol \epsilon \} \\ & \overset{}{=} - \boldsymbol A \boldsymbol \epsilon + \boldsymbol w \end{aligned} νt=ayAx^t+Onsager term mnνt1div(η(rt1))=Ax0+w[Aη(rit1)+mnνt1div(η(rit1))]+Onsager term mnνt1div(η(rt1))+O(1/m )bA(x0x^t1=η(rit1) (x0+ϵ))+w    { where η(rit1)x^t1, define x^t1=x0+ϵ}=Aϵ+w

注意到,在(a)中, ν t \boldsymbol \nu^t νt与矩阵 A \boldsymbol A A的相关性体现在 A x ^ t \boldsymbol A \hat {\boldsymbol x}^t Ax^t与Onsager term这两项中,因为AMP线性迭代式的操作,Onsager项的相关性被消除了。剩余一项的相关性,如(b)可见,随着估计误差的减小,而逐渐消失。

另一方面,我们还要考虑 x ^ t \hat{\boldsymbol x}^{t} x^t与矩阵 A \boldsymbol A A的相关性,在AMP迭代的非线性估计中, x ^ t \hat{\boldsymbol x}^{t} x^t与矩阵 A \boldsymbol A A的相关性通过 A T v t \boldsymbol A^T \boldsymbol v^t ATvt建立,有
A T v t = − A T A ϵ + A T w \boldsymbol A^T \boldsymbol v^t = - \boldsymbol A^T \boldsymbol A \boldsymbol \epsilon + \boldsymbol A^T \boldsymbol w ATvt=ATAϵ+ATw

一般有假设 A \boldsymbol A A w \boldsymbol w w相互独立, A T A ϵ \boldsymbol A^T \boldsymbol A \boldsymbol \epsilon ATAϵ项的思考与上述类似。事实上,相关性最强的项体现在Onsager term(依据Taylor展开直接得到的),但是因为线性迭代估计把Onsager term给消除了,所以依赖性大大降低。

直观理解状态演进过程

回顾AMP的状态演进分析

若噪声 w ∼ N ( 0 , σ 2 I ) \boldsymbol w \sim \mathcal N(\boldsymbol 0, \sigma^2 \boldsymbol I) wN(0,σ2I),则AMP的状态演进分析为:
for  t = 0 , 1 , 2 , ⋯ τ t 2 = σ 2 + n m E t E t = E { [ η t ( X 0 + N ( 0 , τ t 2 ) ) − X 0 ] 2 } \begin{aligned} \text{for } t &=0,1,2,\cdots \\ \tau^2_t &= \sigma^2 + \frac{n}{m} \mathcal E^t \\ \mathcal E^t & = \mathbb E \left \{ {\left [ \eta^t \left ( X_0 + \mathcal N(0,\tau^2_t) \right ) - X_0 \right ]}^2 \right \} \end{aligned} for tτt2Et=0,1,2,=σ2+mnEt=E{[ηt(X0+N(0,τt2))X0]2}

考虑误差项 e t = r t − x 0 \boldsymbol e_t = \boldsymbol r_t - \boldsymbol x_0 et=rtx0,有
e t = r t − x 0 = x ^ t + A T ν t − x 0 = x ^ t + A T [ A ( x 0 − x ^ t − 1 ) + w ] − x 0 → ( I − A T A ) ( x ^ t − x 0 ) + A T w \begin{aligned} \boldsymbol e_t &= \boldsymbol r_t - \boldsymbol x_0 \\ &= \hat {\boldsymbol x}^t+\boldsymbol A^T \boldsymbol \nu^t - \boldsymbol x_0 \\ & = \hat {\boldsymbol x}^t + \boldsymbol A^T \left [ \boldsymbol A ( \boldsymbol x_0 - \hat {\boldsymbol x}^{t-1}) + \boldsymbol w \right ] - \boldsymbol x_0 \\ & \rightarrow (\boldsymbol I - \boldsymbol A^T \boldsymbol A)(\hat {\boldsymbol x}^t - \boldsymbol x_0) + \boldsymbol A^T \boldsymbol w \end{aligned} et=rtx0=x^t+ATνtx0=x^t+AT[A(x0x^t1)+w]x0(IATA)(x^tx0)+ATw

根据中心极限定理和矩阵 A \boldsymbol A A的分布,可以得到 ( I − A T A ) (\boldsymbol I - \boldsymbol A^T \boldsymbol A) (IATA)的每一项服从高斯分布 N ( 0 , 1 / m ) \mathcal N(0,1/m) N(0,1/m),因此
∥ ( I − A T A ) ( x ^ t − x 0 ) ∥ F 2 → n m ∥ ( x ^ t − x 0 ) ∥ 2 2   ( m , n → ∞ ) {\Vert (\boldsymbol I - \boldsymbol A^T \boldsymbol A)(\hat {\boldsymbol x}^t - \boldsymbol x_0) \Vert}^2_F \rightarrow \frac{n}{m} {\Vert (\hat {\boldsymbol x}^t - \boldsymbol x_0) \Vert }^2_2 \ (m,n \rightarrow \infty) (IATA)(x^tx0)F2mn(x^tx0)22 (m,n)

因此
lim ⁡ n → ∞ 1 n ∥ e t ∥ 2 2 → n m ⋅ 1 n ∥ ( x ^ t − x 0 ) ∥ 2 2 + σ 2 = n m E [ x ^ t − x 0 ] + σ 2 \begin{aligned} \lim_{n \rightarrow \infty} \frac{1}{n} {\Vert \boldsymbol e_t \Vert}^2_2 & \rightarrow \frac{n}{m} \cdot \frac{1}{n} {\Vert (\hat {\boldsymbol x}^t - \boldsymbol x_0) \Vert}^2_2 + \sigma^2 \\ & = \frac{n}{m} \mathbb E[\hat x_t - x_0] + \sigma^2 \end{aligned} nlimn1et22mnn1(x^tx0)22+σ2=mnE[x^tx0]+σ2

因此直观上得到了AMP状态演进分析的方程,但是该推导过程最重要的假设是考虑 x ^ t \hat{\boldsymbol x}^{t} x^t与矩阵 A \boldsymbol A A的相关性已被消除(相关性的主成分是因为Onsager项被删除的)。

  • 7
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
### 回答1: 基于运算放大器(Operational Amplifier,简称OP-AMP)和模拟集成电路设计是一种常见的电路设计方法。OP-AMP是一种特殊的运算放大器,通过选取不同的OP-AMP芯片、配置不同的外部元件等方式,可以实现各种不同的功能电路设计。 在进行基于OP-AMP的模拟电路设计之前,首先需要了解OP-AMP的基本原理和特性。OP-AMP具有高增益、高输入阻抗、低输出阻抗等特点,可以对电压信号进行放大、滤波、运算等操作。通过合理的电路配置和元件选取,可以设计出满足特定需求的功能电路。 在进行模拟电路设计时,首先需要明确电路的功能和性能指标。例如,设计一个放大器时,需要确定所需的增益度、输入输出阻抗、带宽等参数。根据特定的需求,选取适合的OP-AMP芯片并配置外部元件,可以使电路满足设计要求。 对于模拟集成电路设计的过程,一般包括以下几个步骤:电路需求分析、电路拓扑设计、电路参数计算、元器件选取和仿真验证等。设计完成后,应进行电路性能测试和优化,确保电路满足设计要求。 在进行基于OP-AMP的模拟电路设计时,需要掌握一定的电路理论知识,熟悉OP-AMP的基本工作原理和特性,并且具备一定的电路设计和分析能力。有关基于OP-AMP的模拟电路设计的详细内容,可以通过查阅相关资料或者下载相关的PDF文档进行学习和了解。 ### 回答2: 运算放大器和模拟集成电路设计是现代电子技术中非常重要的一个领域。通过对运算放大器和模拟集成电路设计pdf的下载,我们可以学习到关于电路设计的基本知识和技巧。 首先,pdf中通常会介绍运算放大器的基础知识,包括运算放大器的工作原理、参考电路的设计和性能参数的选择等。此外,还会涉及到运算放大器的各种应用,如滤波器的设计、信号调理和运算放大器的稳定性等。 其次,pdf中还会介绍模拟集成电路的设计方法和技巧。模拟集成电路设计是一门复杂而精细的学科,需要考虑很多因素,如电路拓扑结构的选择、电源和晶体管尺寸的确定、偏置电路的设计和电路的稳定性等。通过学习pdf中的内容,我们可以了解到模拟集成电路设计的基本原理和设计流程。 此外,pdf中还可能会介绍一些实际的电路案例和设计经验,帮助读者更好地理解和掌握运算放大器和模拟集成电路的设计。通过实践和案例学习,我们可以掌握运算放大器和模拟集成电路设计的关键技术和实际应用。 总之,通过下载和学习运算放大器和模拟集成电路设计pdf,我们可以深入了解到运算放大器和模拟集成电路设计的基本原理、设计方法和技巧,同时也可以通过实践和案例学习更好地掌握这门学科。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值