联合高斯分布与条件高斯分布的相关性质(贝叶斯线性模型)

贝叶斯一般线性模型(Bayesian general linear model)

贝叶斯线性模型可以表征为:
y = H x + w (1) \boldsymbol y = \boldsymbol {H x} + \boldsymbol w \tag{1} y=Hx+w(1)

其中 y ∈ R N \boldsymbol{y} \in \mathbb{R}^{N} yRN H ∈ R N × p \boldsymbol{H} \in \mathbb{R}^{N \times p} HRN×p已知, x ∈ R p \boldsymbol x \in \mathbb{R}^{p} xRp x ∼ N ( μ x , C x ) \boldsymbol x \sim \mathcal{N}(\boldsymbol{ \mu_x}, \boldsymbol{C_x}) xN(μx,Cx) w ∈ R N \boldsymbol{w} \in \mathbb{R}^N wRN是噪声向量, w ∼ N ( 0 , C w ) \boldsymbol w \sim \mathcal{N}(\boldsymbol 0, \boldsymbol {C_w}) wN(0,Cw) x \boldsymbol x x w \boldsymbol{w} w相互独立。与传统的线性模型相比,贝叶斯线性模型将 x \boldsymbol{x} x看作是一个随机向量。

我们考虑 x , y \boldsymbol{x,y} x,y的联合概率分布,令 z = [ y T , x T ] T \boldsymbol{z} = [\boldsymbol{y}^T,\boldsymbol{x}^T]^T z=[yT,xT]T,则
z = [ H x + w x ]    = [ H I N I p 0 ] [ x w ] = A [ x w ] (2) \begin{aligned} \boldsymbol{z}&=\left[ \begin{array}{c} \boldsymbol{Hx}+\boldsymbol{w}\\ \boldsymbol{x}\\ \end{array} \right] \,\, \\ &= \left[ \begin{matrix} \boldsymbol{H}& \boldsymbol{I}_N\\ \boldsymbol{I}_p& \boldsymbol{0}\\ \end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{w}\\ \end{array} \right] \\ & = \boldsymbol{A} \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{w}\\ \end{array} \right] \tag{2} \end{aligned} z=[Hx+wx]=[HIpIN0][xw]=A[xw](2)

因为 x \boldsymbol{x} x w \boldsymbol{w} w都服从高斯分布且各自独立,所以 [ x T , w T ] T [\boldsymbol{x}^T,\boldsymbol{w}^T]^T [xT,wT]T的联合分布也是高斯,因为 z \boldsymbol{z} z是由 [ x T , w T ] T [\boldsymbol{x}^T,\boldsymbol{w}^T]^T [xT,wT]T经过线性变换(矩阵 A \boldsymbol{A} A)得到的,所以 z \boldsymbol{z} z也服从高斯分布。关于高斯线性变换的性质,我们利用矩母函数,做出如下解释和证明。

高斯随机向量的线性变换仍为高斯:解释与证明
给定随机变量 X ∼ f X ( x ) {X} \sim f_{{X}}(x) XfX(x),其矩母函数为:
ϕ X ( w ) = ∫ f X ( x ) e j w x d x = E [ e j w x ] \begin{aligned} \phi_{X}(w) &= \int f_{{X}}(x) e^{jwx} \text{d}x \\ & = \mathbb{E} \left [ e^{jwx} \right] \end{aligned} ϕX(w)=fX(x)ejwxdx=E[ejwx]

我们假设
X ∈ R N , X ∼ N ( μ , Σ ) , Y = A X ∈ R m , A ∈ R m × n \boldsymbol X \in \mathbb{R}^{N}, \boldsymbol X \sim \mathcal{N}(\boldsymbol \mu, \boldsymbol \Sigma), \boldsymbol Y = \boldsymbol {AX} \in \mathbb{R}^{m}, \boldsymbol A \in \mathbb{R}^{m \times n} XRN,XN(μ,Σ),Y=AXRm,ARm×n

由于矩阵 A \boldsymbol{A} A不是方阵,无法从概率密度函数的角度分析 Y \boldsymbol{Y} Y的分布,我们借助矩母函数:
ϕ Y ( w ) = E [ exp ⁡ ( j w T y ) ] = E [ exp ⁡ ( j w T A x ) ] = E [ exp ⁡ ( j ( A T w ) T x ) ] = ϕ X ( A T w ) = exp ⁡ ( j w T A μ − 1 2 w T A Σ A T w ) ⇒ Y ∼ N ( A μ , A Σ A T ) (3) \begin{aligned} \phi_{\boldsymbol Y}(\boldsymbol w) &= \mathbb{E} \left [ \exp(j \boldsymbol w^T \boldsymbol y) \right ] \\ & = \mathbb{E} \left [ \exp(j \boldsymbol w^T \boldsymbol {Ax}) \right ] \\ & = \mathbb{E} \left [ \exp(j (\boldsymbol A^T \boldsymbol w)^T \boldsymbol {x}) \right ] \\ & = \phi_{\boldsymbol X}(\boldsymbol A^T \boldsymbol w) \\ & = \exp(j \boldsymbol w^T \boldsymbol A \boldsymbol \mu - \frac{1}{2} \boldsymbol w^T \boldsymbol {A \Sigma A}^T \boldsymbol w) \\ \Rightarrow \boldsymbol Y &\sim \mathcal{N}(\boldsymbol {A\mu},\boldsymbol {A \Sigma A}^T) \end{aligned} \tag{3} ϕY(w)Y=E[exp(jwTy)]=E[exp(jwTAx)]=E[exp(j(ATw)Tx)]=ϕX(ATw)=exp(jwTAμ21wTAΣATw)N(Aμ,AΣAT)(3)

因此高斯分布的线性变换仍然是高斯的。反过来,我们可以通过构造矩阵 A \boldsymbol{A} A来求解边际概率,比如要求 x 1 x_1 x1的边际概率,只需把矩阵 A \boldsymbol{A} A构造为第一个对角元素为1,其他元素都为0的矩阵即可。可以表述为:如果联合分布是高斯分布,则边际分布一定是高斯分布。但是反过来不一定成立:如果边际分布是高斯分布,则联合分布不一定是高斯分布,反例如下:构造
f X 1 , X 2 ( x 1 , x 2 ) = 1 2 π exp ⁡ ( − x 1 2 + x 2 2 2 ) + K ( x 1 , x 2 ) f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi} \exp \left( -\frac{x_1^2 + x_2^2}{2} \right) + K(x_1,x_2) fX1,X2(x1,x2)=2π1exp(2x12+x22)+K(x1,x2)

其中
∫ K ( x 1 , x 2 ) d x 1 = ∫ K ( x 1 , x 2 ) d x 2 = 0 \int K(x_1,x_2) \text{d} x_1 = \int K(x_1,x_2) \text{d} x_2 = 0 K(x1,x2)dx1=K(x1,x2)dx2=0

那么关于 x 1 , x 2 x_1,x_2 x1,x2的边际分布是高斯分布,但是不满足高斯分布的一种构造方式为:
f X 1 , X 2 ( x 1 , x 2 ) = 1 2 π exp ⁡ ( − x 1 2 + x 2 2 2 ) ( 1 + sin ⁡ x 1 sin ⁡ x 2 ) f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi} \exp \left( -\frac{x_1^2 + x_2^2}{2} \right)(1 + \sin x_1\sin x_2) fX1,X2(x1,x2)=2π1exp(2x12+x22)(1+sinx1sinx2)

可以看出,构造的例子满足边际概率为高斯分布,但是不满足联合概率为高斯。

贝叶斯线性模型下的联合高斯分布和边际分布

延续式(1)和式(2),因为独立性,不难得到
[ x w ] ∼ N ( [ μ 0 ] , [ C x 0 0 C w ] ) (5) \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{w}\\ \end{array} \right] \sim \mathcal{N} \left( \left[ \begin{array}{c} \boldsymbol{\mu }\\ \boldsymbol{0}\\ \end{array} \right] ,\left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol 0\\ \boldsymbol 0& \boldsymbol{C}_{\boldsymbol{w}}\\ \end{matrix} \right] \right) \tag{5} [xw]N([μ0],[Cx00Cw])(5)

再考虑线性变换,根据式(4),可以得到:
z = [ H I N I p 0 ] [ x w ] ∼ N ( [ H I N I p 0 ] [ μ 0 ] , [ H I N I p 0 ] [ C x 0 0 C w ] [ H T I p I N 0 ] ) \boldsymbol{z} = \left[ \begin{matrix} \boldsymbol{H}& \boldsymbol{I}_N\\ \boldsymbol{I}_p& \boldsymbol{0}\\ \end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{w}\\ \end{array} \right] \sim \mathcal{N} \left( \left[ \begin{matrix} \boldsymbol{H}& \boldsymbol{I}_N\\ \boldsymbol{I}_p& \boldsymbol{0}\\ \end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\mu }\\ \boldsymbol{0}\\ \end{array} \right] ,\left[ \begin{matrix} \boldsymbol{H}& \boldsymbol{I}_N\\ \boldsymbol{I}_p& \boldsymbol{0}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol 0\\ \boldsymbol 0& \boldsymbol{C}_{\boldsymbol{w}}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{H}^T& \boldsymbol{I}_p\\ \boldsymbol{I}_N& \boldsymbol{0}\\ \end{matrix} \right] \right) z=[HIpIN0][xw]N([HIpIN0][μ0],[HIpIN0][Cx00Cw][HTINIp0])


[ y x ] ∼ N ( [ H I N I p 0 ] [ μ 0 ] , [ H I N I p 0 ] [ C x 0 0 C w ] [ H T I p I N 0 ] ) (6) \left[ \begin{array}{c} \boldsymbol{y}\\ \boldsymbol{x}\\ \end{array} \right] \sim \mathcal{N} \left( \left[ \begin{matrix} \boldsymbol{H}& \boldsymbol{I}_N\\ \boldsymbol{I}_p& \boldsymbol{0}\\ \end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\mu }\\ \boldsymbol{0}\\ \end{array} \right] ,\left[ \begin{matrix} \boldsymbol{H}& \boldsymbol{I}_N\\ \boldsymbol{I}_p& \boldsymbol{0}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol 0\\ \boldsymbol 0& \boldsymbol{C}_{\boldsymbol{w}}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{H}^T& \boldsymbol{I}_p\\ \boldsymbol{I}_N& \boldsymbol{0}\\ \end{matrix} \right] \right) \tag{6} [yx]N([HIpIN0][μ0],[HIpIN0][Cx00Cw][HTINIp0])(6)

式(6)也就是 x , y \boldsymbol{x,y} x,y的联合概率分布,化简为
[ x y ] ∼ N ( [ μ H μ ] , [ C x C x H T H C x H C x H T + C w ] ) (7) \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{y}\\ \end{array} \right] \sim \mathcal{N} \left( \left[ \begin{array}{c} \boldsymbol{\mu }\\ \boldsymbol{H\mu }\\ \end{array} \right] ,\left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol{C}_{\boldsymbol{x}}\boldsymbol{H}^T\\ \boldsymbol{HC}_{\boldsymbol{x}}& \boldsymbol{HC}_{\boldsymbol{x}}\boldsymbol{H}^T+\boldsymbol{C}_{\boldsymbol{w}}\\ \end{matrix} \right] \right) \tag{7} [xy]N([μHμ],[CxHCxCxHTHCxHT+Cw])(7)

基于(7),构造线性变换
[ 0 0 0 I ] [ x y ] \left[ \begin{matrix} \boldsymbol{0}& \boldsymbol{0}\\ \boldsymbol{0}& \boldsymbol{I}\\ \end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{y}\\ \end{array} \right] [000I][xy]

可以得到关于 y \boldsymbol{y} y的边际概率:
y ∼ N ( H μ , H C x H T + C w ) (8) \boldsymbol y \sim \mathcal{N}(\boldsymbol{H \mu},\boldsymbol{HC}_{\boldsymbol{x}}\boldsymbol{H}^T+\boldsymbol{C}_{\boldsymbol{w}}) \tag{8} yN(Hμ,HCxHT+Cw)(8)

贝叶斯线性模型下的条件高斯分布

为了方便描述,我们令
[ x y ] ∼ N ( [ E [ x ] E [ y ] ] , C ) \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{y}\\ \end{array} \right] \sim \mathcal{N} \left( \left[ \begin{array}{c} \mathbb{E} [\boldsymbol{x}]\\ \mathbb{E} [\boldsymbol{y}]\\ \end{array} \right] ,\boldsymbol{C} \right) [xy]N([E[x]E[y]],C)

那么条件概率 p ( y ∣ x ) p(\boldsymbol{y}|\boldsymbol{x}) p(yx)可以表示为:
p ( y ∣ x ) = p ( x , y ) p ( x ) = 1 ( 2 π ) N + p 2 det 1 2 ( C ) exp ⁡ [ − 1 2 [ x − E [ x ] y − E [ y ] ] T C − 1 [ x − E [ x ] y − E [ y ] ] ] 1 ( 2 π ) p 2 det 1 2 ( C x ) exp ⁡ [ − 1 2 ( x − E [ x ) T C x − 1 ( x − E [ x ) ] \begin{aligned} p(\boldsymbol{y}|\boldsymbol{x}) & = \frac{p(\boldsymbol{x},\boldsymbol y)}{p(\boldsymbol x)} \\ & = \frac{\frac{1}{(2 \pi)^{{\frac{N+p}{2}}} \text{det}^{\frac{1}{2}} (\boldsymbol C)} \exp \left [ -\frac{1}{2} \left[ \begin{array}{c} \boldsymbol{x}-\mathbb{E} [\boldsymbol{x}]\\ \boldsymbol{y}-\mathbb{E} [\boldsymbol{y}]\\ \end{array} \right] ^T\boldsymbol{C}^{-1}\left[ \begin{array}{c} \boldsymbol{x}-\mathbb{E} [\boldsymbol{x}]\\ \boldsymbol{y}-\mathbb{E} [\boldsymbol{y}]\\ \end{array} \right] \right]} { \frac{1}{(2 \pi)^{\frac{p}{2}} \text{det}^{\frac{1}{2}} (\boldsymbol C_x)} \exp \left[ -\frac{1}{2} (\boldsymbol{x}-\mathbb{E} [\boldsymbol{x})^T \boldsymbol C^{-1}_x (\boldsymbol{x}-\mathbb{E} [\boldsymbol{x}) \right ] } \end{aligned} p(yx)=p(x)p(x,y)=(2π)2pdet21(Cx)1exp[21(xE[x)TCx1(xE[x)](2π)2N+pdet21(C)1exp[21[xE[x]yE[y]]TC1[xE[x]yE[y]]]

将协方差矩阵构造为分块矩阵的形式(对应到式(7)):
C = [ C x C x y C y x C y ] \boldsymbol C = \left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol{C}_{\boldsymbol{xy}}\\ \boldsymbol{C}_{\boldsymbol{yx}}& \boldsymbol{C}_{\boldsymbol{y}}\\ \end{matrix} \right] C=[CxCyxCxyCy]

那么依据分块矩阵的行列式分解公式:
det ( [ A 11 A 12 A 21 A 22 ] ) = det ( A 11 ) det ( A 22 − A 21 A 11 − 1 A 12 ) \text{det} \left ( \left[ \begin{matrix} \boldsymbol{A}_{11}& \boldsymbol{A}_{12}\\ \boldsymbol{A}_{21}& \boldsymbol{A}_{22}\\ \end{matrix} \right] \right) = \text{det} (\boldsymbol{A}_{11}) \text{det} (\boldsymbol{A}_{22} - \boldsymbol{A}_{21}\boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12}) det([A11A21A12A22])=det(A11)det(A22A21A111A12)

因此
det ( C ) = det ( C x ) det ( C y − C y x C x − 1 C x y ) ⇒ det ( C ) det ( C x ) = det ( C y − C y x C x − 1 C x y ) \begin{aligned} \text{det}(\boldsymbol C) &= \text{det}(\boldsymbol {C}_{\boldsymbol x}) \text{det} (\boldsymbol C_{\boldsymbol y} - \boldsymbol{C}_{\boldsymbol{yx}} \boldsymbol {C}_{\boldsymbol x}^{-1} \boldsymbol{C}_{\boldsymbol{xy}} ) \\ \Rightarrow \frac{\text{det}(\boldsymbol C)}{\text{det}(\boldsymbol {C}_{\boldsymbol x})} &= \text{det} (\boldsymbol C_{\boldsymbol y} - \boldsymbol{C}_{\boldsymbol{yx}} \boldsymbol {C}_{\boldsymbol x}^{-1} \boldsymbol{C}_{\boldsymbol{xy}} ) \end{aligned} det(C)det(Cx)det(C)=det(Cx)det(CyCyxCx1Cxy)=det(CyCyxCx1Cxy)

因此,我们可以进一步把 p ( y ∣ x ) p(\boldsymbol{y}|\boldsymbol{x}) p(yx)表示为:
p ( y ∣ x ) = 1 ( 2 π ) N 2 det 1 2 ( C y − C y x C x − 1 C x y ) exp ⁡ ( − 1 2 Q ) p(\boldsymbol{y}|\boldsymbol{x}) = \frac{1} {(2\pi)^{\frac{N}{2}} \text{det}^{\frac{1}{2}} (\boldsymbol C_{\boldsymbol y} - \boldsymbol{C}_{\boldsymbol{yx}} \boldsymbol {C}_{\boldsymbol x}^{-1} \boldsymbol{C}_{\boldsymbol{xy}})} \exp \left( -\frac{1}{2} Q \right) p(yx)=(2π)2Ndet21(CyCyxCx1Cxy)1exp(21Q)

其中
Q = [ x − E [ x ] y − E [ y ] ] T C − 1 [ x − E [ x ] y − E [ y ] ] − ( x − E [ x ] ) T C x − 1 ( x − E [ x ] ) Q = \left[ \begin{array}{c} \boldsymbol{x}-\mathbb{E} [\boldsymbol{x}]\\ \boldsymbol{y}-\mathbb{E} [\boldsymbol{y}]\\ \end{array} \right] ^T\boldsymbol{C}^{-1}\left[ \begin{array}{c} \boldsymbol{x}-\mathbb{E} [\boldsymbol{x}]\\ \boldsymbol{y}-\mathbb{E} [\boldsymbol{y}]\\ \end{array} \right] - (\boldsymbol{x}-\mathbb{E} [\boldsymbol{x}])^T \boldsymbol C^{-1}_x (\boldsymbol{x}-\mathbb{E} [\boldsymbol{x}]) Q=[xE[x]yE[y]]TC1[xE[x]yE[y]](xE[x])TCx1(xE[x])

对于分块对称矩阵 C \boldsymbol{C} C,其求逆公式为:
[ A 11 A 12 A 21 A 22 ] − 1 = [ ( A 11 − A 12 A 22 − 1 A 21 ) − 1 − A 11 − 1 A 12 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 − ( A 22 − A 21 A 11 − 1 A 12 ) − 1 A 21 A 11 − 1 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 ] \left[ \begin{matrix} \boldsymbol{A}_{11}& \boldsymbol{A}_{12}\\ \boldsymbol{A}_{21}& \boldsymbol{A}_{22}\\ \end{matrix} \right] ^{-1}=\left[ \begin{matrix} \left( \boldsymbol{A}_{11}-\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21} \right) ^{-1}& -\boldsymbol{A}_{11}^{-1}\boldsymbol{A}_{12}\left( \boldsymbol{A}_{22}-\boldsymbol{A}_{21}\boldsymbol{A}_{11}^{-1}\boldsymbol{A}_{12} \right) ^{-1}\\ -\left( \boldsymbol{A}_{22}-\boldsymbol{A}_{21}\boldsymbol{A}_{11}^{-1}\boldsymbol{A}_{12} \right) ^{-1}\boldsymbol{A}_{21}\boldsymbol{A}_{11}^{-1}& \left( \boldsymbol{A}_{22}-\boldsymbol{A}_{21}\boldsymbol{A}_{11}^{-1}\boldsymbol{A}_{12} \right) ^{-1}\\ \end{matrix} \right] [A11A21A12A22]1=[(A11A12A221A21)1(A22A21A111A12)1A21A111A111A12(A22A21A111A12)1(A22A21A111A12)1]

根据矩阵求逆引理
( A 11 − A 12 A 22 − 1 A 21 ) − 1    =    A 11 − 1    +    A 11 − 1 A 12 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 A 21 A 11 − 1 \left( \boldsymbol{A}_{11}-\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21} \right) ^{-1}\,\,=\,\,\boldsymbol{A}_{11}^{-1}\,\,+\,\,\boldsymbol{A}_{11}^{-1}\boldsymbol{A}_{12}\left( \boldsymbol{A}_{22}-\boldsymbol{A}_{21}\boldsymbol{A}_{11}^{-1}\boldsymbol{A}_{12} \right) ^{-1}\boldsymbol{A}_{21}\boldsymbol{A}_{11}^{-1} (A11A12A221A21)1=A111+A111A12(A22A21A111A12)1A21A111

我们代入可以得到
C − 1 = [ C x − 1 − C x − 1 C x y B − 1 C y x C x − 1 − C x − 1 C x y B − 1 − B − 1 C y x C x − 1 B − 1 ] \boldsymbol{C}^{-1}=\left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}^{-1}-\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{C}_{\boldsymbol{xy}}\boldsymbol{B}^{-1}\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}& -\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{C}_{\boldsymbol{xy}}\boldsymbol{B}^{-1}\\ -\boldsymbol{B}^{-1}\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}& \boldsymbol{B}^{-1}\\ \end{matrix} \right] C1=[Cx1Cx1CxyB1CyxCx1B1CyxCx1Cx1CxyB1B1]

其中
B = C y y − C y x C x x − 1 C x y \boldsymbol B = \boldsymbol C_{\boldsymbol {y y}} - \boldsymbol C_{\boldsymbol {y x}} \boldsymbol C^{-1}_{\boldsymbol {x x}} \boldsymbol C_{\boldsymbol {x y}} B=CyyCyxCxx1Cxy

进一步,我们把 C − 1 \boldsymbol{C}^{-1} C1分解为:
C − 1 =    [ I − C x − 1 C x y 0 I ] [ C x − 1 0 0 B − 1 ] [ I 0 − C y x C x − 1 I ] \boldsymbol{C}^{-1}=\,\,\left[ \begin{matrix} \boldsymbol{I}& -\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{C}_{\boldsymbol{xy}}\\ \boldsymbol{0}& \boldsymbol{I}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}^{-1}& \boldsymbol{0}\\ \boldsymbol{0}& \boldsymbol{B}^{-1}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{I}& \boldsymbol{0}\\ -\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}& \boldsymbol{I}\\ \end{matrix} \right] C1=[I0Cx1CxyI][Cx100B1][ICyxCx10I]

x ~ = x − E [ x ] \tilde{ \boldsymbol x} = \boldsymbol{x} - \mathbb{E}[\boldsymbol{x}] x~=xE[x] y ~ = y − E [ y ] \tilde{ \boldsymbol y} = \boldsymbol{y} - \mathbb{E}[\boldsymbol{y}] y~=yE[y],我们有
Q = [ x ~ y ~ ] T [ I − C x − 1 C x y 0 I ] [ C x − 1 0 0 B − 1 ] [ I 0 − C y x C x − 1 I ] [ x ~ y ~ ]    −    x ~ T C x − 1 x ~ = [ x ~ y ~ − C y x C x − 1 x ~ ] T [ C x − 1 0 0 B − 1 ] [ x ~ y ~ − C y x C x − 1 x ~ ] −    x ~ T C x − 1 x ~ = ( y ~ − C y x C x − 1 x ~ ) T B − 1 ( y ~ − C y x C x − 1 x ~ ) \begin{aligned} Q &= \left[ \begin{array}{c} \boldsymbol{\tilde{x}}\\ \boldsymbol{\tilde{y}}\\ \end{array} \right] ^T\left[ \begin{matrix} \boldsymbol{I}& -\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{C}_{\boldsymbol{xy}}\\ \boldsymbol{0}& \boldsymbol{I}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}^{-1}& \boldsymbol{0}\\ \boldsymbol{0}& \boldsymbol{B}^{-1}\\ \end{matrix} \right] \left[ \begin{matrix} \boldsymbol{I}& \boldsymbol{0}\\ -\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}& \boldsymbol{I}\\ \end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\tilde{x}}\\ \boldsymbol{\tilde{y}}\\ \end{array} \right] \,\,-\,\,\boldsymbol{\tilde{x}}^T\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{\tilde{x}} \\ & = \left[ \begin{array}{c} \boldsymbol{\tilde{x}}\\ \boldsymbol{\tilde{y}}-\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{\tilde{x}}\\ \end{array} \right] ^T\left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}^{-1}& \boldsymbol{0}\\ \boldsymbol{0}& \boldsymbol{B}^{-1}\\ \end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\tilde{x}}\\ \boldsymbol{\tilde{y}}-\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{\tilde{x}}\\ \end{array} \right] -\,\,\boldsymbol{\tilde{x}}^T\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{\tilde{x}} \\ & = \left( \boldsymbol{\tilde{y}}-\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{\tilde{x}} \right) ^T\boldsymbol{B}^{-1}\left( \boldsymbol{\tilde{y}}-\boldsymbol{C}_{\boldsymbol{yx}}\boldsymbol{C}_{\boldsymbol{x}}^{-1}\boldsymbol{\tilde{x}} \right) \end{aligned} Q=[x~y~]T[I0Cx1CxyI][Cx100B1][ICyxCx10I][x~y~]x~TCx1x~=[x~y~CyxCx1x~]T[Cx100B1][x~y~CyxCx1x~]x~TCx1x~=(y~CyxCx1x~)TB1(y~CyxCx1x~)

因此,条件概率 p ( y ∣ x ) p(\boldsymbol{y}|\boldsymbol{x}) p(yx)表示为:
p ( y ∣ x ) = 1 ( 2 π ) N 2 det 1 2 ( C y − C y x C x − 1 C x y ) exp ⁡ ( − 1 2 ∥ ( C y − C y x C x x − 1 C x y ) − 1 2 ( y − ( E [ y ] + C y x C x − 1 ( x − E [ x ] ) ) ) ∥ 2 2 ) p(\boldsymbol{y}|\boldsymbol{x}) = \frac{1} {(2\pi)^{\frac{N}{2}} \text{det}^{\frac{1}{2}} (\boldsymbol C_{\boldsymbol y} - \boldsymbol{C}_{\boldsymbol{yx}} \boldsymbol {C}_{\boldsymbol x}^{-1} \boldsymbol{C}_{\boldsymbol{xy}})} \exp \left( -\frac{1}{2} { \left \Vert \left (\boldsymbol C_{\boldsymbol {y }} - \boldsymbol C_{\boldsymbol {y x}} \boldsymbol C^{-1}_{\boldsymbol {x x}} \boldsymbol C_{\boldsymbol {x y}}\right )^{-\frac{1}{2}} \left( \boldsymbol y - \left(\mathbb{E}[\boldsymbol y] + \boldsymbol{C}_{\boldsymbol{yx}} \boldsymbol {C}_{\boldsymbol x}^{-1} (\boldsymbol{x} - \mathbb{E}[\boldsymbol{x}]) \right) \right) \right \Vert}^2_2 \right) p(yx)=(2π)2Ndet21(CyCyxCx1Cxy)1exp(21(CyCyxCxx1Cxy)21(y(E[y]+CyxCx1(xE[x])))22)


y ∣ x ∼ N ( E [ y ] + C y x C x − 1 ( x − E [ x ] ) , C y − C y x C x x − 1 C x y ) (9) \boldsymbol y| \boldsymbol x \sim \mathcal{N}\left(\mathbb{E}[\boldsymbol y] + \boldsymbol{C}_{\boldsymbol{yx}} \boldsymbol {C}_{\boldsymbol x}^{-1} (\boldsymbol{x} - \mathbb{E}[\boldsymbol{x}]), \boldsymbol C_{\boldsymbol {y}} - \boldsymbol C_{\boldsymbol {y x}} \boldsymbol C^{-1}_{\boldsymbol {x x}} \boldsymbol C_{\boldsymbol {x y}} \right) \tag{9} yxN(E[y]+CyxCx1(xE[x]),CyCyxCxx1Cxy)(9)

类似地,我们可以得到
x ∣ y ∼ N ( E [ x ] + C x y C y − 1 ( y − E [ y ] ) , C x − C x y C y y − 1 C y x ) (10) \boldsymbol x| \boldsymbol y \sim \mathcal{N}\left(\mathbb{E}[\boldsymbol x] + \boldsymbol{C}_{\boldsymbol{xy}} \boldsymbol {C}_{\boldsymbol y}^{-1} (\boldsymbol{y} - \mathbb{E}[\boldsymbol{y}]), \boldsymbol C_{\boldsymbol {x}} - \boldsymbol C_{\boldsymbol {x y}} \boldsymbol C^{-1}_{\boldsymbol {y y}} \boldsymbol C_{\boldsymbol {y x}} \right) \tag{10} xyN(E[x]+CxyCy1(yE[y]),CxCxyCyy1Cyx)(10)

结合条件高斯分布的线性模型

贝叶斯线性模型中协方差的对应关系:
C = [ C x C x y C y x C y ] = [ C x C x H T H C x H C x H T + C w ] (11) \boldsymbol C = \left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol{C}_{\boldsymbol{xy}}\\ \boldsymbol{C}_{\boldsymbol{yx}}& \boldsymbol{C}_{\boldsymbol{y}}\\ \end{matrix} \right] = \left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol{C}_{\boldsymbol{x}}\boldsymbol{H}^T\\ \boldsymbol{HC}_{\boldsymbol{x}}& \boldsymbol{HC}_{\boldsymbol{x}}\boldsymbol{H}^T+\boldsymbol{C}_{\boldsymbol{w}}\\ \end{matrix} \right] \tag{11} C=[CxCyxCxyCy]=[CxHCxCxHTHCxHT+Cw](11)
(1)似然函数

似然分布对应式(9),把式(11)代入到式(9)中,我们发现:
y ∣ x ∼ N ( y ; H x , C w ) (12) \boldsymbol y | \boldsymbol x \sim \mathcal{N} \left (\boldsymbol y; \boldsymbol {Hx}, \boldsymbol C_{\boldsymbol w} \right) \tag{12} yxN(y;Hx,Cw)(12)

我们要说明上述似然函数是由标准的联合分布推导的,很巧的是,该式与贝叶斯线性模型 y = H x + w \boldsymbol y = \boldsymbol {H x} + \boldsymbol w y=Hx+w直观意义上的似然形式一致,如果 x \boldsymbol{x} x w \boldsymbol{w} w都服从高斯分布(这是大前提,对于一般的 x \boldsymbol{x} x的分布,我现在还不确定是否可以直接这样写,感觉应该是不能,具体问题可能得写出(2)的线性转换模型,再根据矩母函数和相应的逆变换判断),我们可以根据概率公式直接写出联合概率
p ( y , x ) = p ( y ∣ x ) p ( x ) = N ( y ; H x , C w ) ⋅ N ( μ x , C x ) (13) p(\boldsymbol y, \boldsymbol x)=p(\boldsymbol y | \boldsymbol x)p(\boldsymbol x)=\mathcal{N}\left (\boldsymbol y; \boldsymbol {Hx}, \boldsymbol C_{\boldsymbol w} \right) \cdot \mathcal{N}(\boldsymbol{ \mu_x}, \boldsymbol{C_x}) \tag{13} p(y,x)=p(yx)p(x)=N(y;Hx,Cw)N(μx,Cx)(13)

(2)后验函数
后验分布对应式(10),把式(11)代入到式(10)中,我们发现:
E [ x ∣ y ] = E [ x ] + C x H T ( H C x H T + C w ) − 1 ( y − E [ y ] ) = μ x + C x H T ( H C x H T + C w ) − 1 ( y − H μ x ) (14) \begin{aligned} \mathbb{E} [\boldsymbol x| \boldsymbol y] & = \mathbb{E} [\boldsymbol x] + \boldsymbol C_{\boldsymbol x} \boldsymbol H^T \left ( \boldsymbol H \boldsymbol C_{\boldsymbol x} \boldsymbol H^T + \boldsymbol C_{\boldsymbol w} \right )^{-1} (\boldsymbol y - \mathbb{E} [\boldsymbol y]) \\ &= \boldsymbol \mu_{\boldsymbol x} + \boldsymbol C_{\boldsymbol x} \boldsymbol H^T \left ( \boldsymbol H \boldsymbol C_{\boldsymbol x} \boldsymbol H^T + \boldsymbol C_{\boldsymbol w} \right )^{-1} (\boldsymbol y - \boldsymbol H \boldsymbol \mu_{\boldsymbol x}) \tag{14} \end{aligned} E[xy]=E[x]+CxHT(HCxHT+Cw)1(yE[y])=μx+CxHT(HCxHT+Cw)1(yHμx)(14)

与之对应的协方差矩阵为
C x ∣ y = C x − C x H T ( H C x H T + C w ) − 1 H C x (15) \boldsymbol C_{\boldsymbol x|\boldsymbol y} = \boldsymbol C_{\boldsymbol x} - \boldsymbol C_{\boldsymbol x} \boldsymbol H^T \left ( \boldsymbol H \boldsymbol C_{\boldsymbol x} \boldsymbol H^T + \boldsymbol C_{\boldsymbol w} \right )^{-1} \boldsymbol H \boldsymbol C_{\boldsymbol x} \tag{15} Cxy=CxCxHT(HCxHT+Cw)1HCx(15)

借助求逆定理
( E + B C D ) − 1 = E − 1 − E − 1 B ( C − 1 + D E − 1 B ) − 1 D E − 1 (\pmb E + \pmb B \pmb C \pmb D)^{-1}=\pmb E^{-1}- \pmb E^{-1} \pmb B (\pmb C^{-1}+ D \pmb E^{-1} \pmb B)^{-1} \pmb D \pmb E^{-1} (EEE+BBBCCCDDD)1=EEE1EEE1BBB(CCC1+DEEE1BBB)1DDDEEE1

经过一系列化简,式(14)(15)还可以化为:
E [ x ∣ y ] = μ x + ( C x − 1 + H T C w − 1 H ) − 1 H T C w − 1 ( y − H μ x ) C x ∣ y = ( C x − 1 + H T C w − 1 H ) − 1 (16) \begin{aligned} \mathbb{E} [\boldsymbol x| \boldsymbol y] &= \boldsymbol \mu_{\boldsymbol x} + \left ( \boldsymbol C^{-1}_{\boldsymbol x} + \boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} \boldsymbol H \right)^{-1} \boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} (\boldsymbol y - \boldsymbol H \boldsymbol \mu_{\boldsymbol x}) \\ \boldsymbol C_{\boldsymbol x|\boldsymbol y} &= \left ( \boldsymbol C^{-1}_{\boldsymbol x} + \boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} \boldsymbol H \right)^{-1} \end{aligned} \tag{16} E[xy]Cxy=μx+(Cx1+HTCw1H)1HTCw1(yHμx)=(Cx1+HTCw1H)1(16)

(3)似然函数 → \rightarrow 联合分布 → \rightarrow 后验分布

根据Bayes公式:
p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) = p ( y ∣ x ) p ( x ) ∫ p ( y ∣ x ) p ( x ) d x \begin{aligned} p( \boldsymbol x|\boldsymbol y) &= \frac{p(\boldsymbol y | \boldsymbol x)p(\boldsymbol x)}{p(\boldsymbol y)} \\ & = \frac{p(\boldsymbol y | \boldsymbol x)p(\boldsymbol x)}{\int p(\boldsymbol y | \boldsymbol x)p(\boldsymbol x) \text{d} \boldsymbol x} \end{aligned} p(xy)=p(y)p(yx)p(x)=p(yx)p(x)dxp(yx)p(x)

因为分母是归一化因子(或者理解为 y \boldsymbol{y} y已经被观测到了,所以认为 p ( y ) p(\boldsymbol y) p(y)已知),所以有:
p ( x ∣ y ) ∝ p ( y ∣ x ) p ( x ) = N ( y ; H x , C w ) ⋅ N ( μ x , C x ) \begin{aligned} p( \boldsymbol x|\boldsymbol y) & \propto p(\boldsymbol y | \boldsymbol x)p(\boldsymbol x) \\ & = \mathcal{N}\left (\boldsymbol y; \boldsymbol {Hx}, \boldsymbol C_{\boldsymbol w} \right) \cdot \mathcal{N}(\boldsymbol{ \mu_x}, \boldsymbol{C_x}) \end{aligned} p(xy)p(yx)p(x)=N(y;Hx,Cw)N(μx,Cx)

根据之前我写的博客两个复高斯分布的乘积,我们可以得到 N ( y ; H x , C w ) ⋅ N ( μ x , C x ) \mathcal{N}\left (\boldsymbol y; \boldsymbol {Hx}, \boldsymbol C_{\boldsymbol w} \right) \cdot \mathcal{N}(\boldsymbol{ \mu_x}, \boldsymbol{C_x}) N(y;Hx,Cw)N(μx,Cx)的均值和方差为
E [ x ∣ y ] = ( C x − 1 + H T C w − 1 H ) − 1 ( C x − 1 μ x + H T C w − 1 y ) C x ∣ y = ( C x − 1 + H T C w − 1 H ) − 1 (17) \begin{aligned} \mathbb{E} [\boldsymbol x| \boldsymbol y] &={\left ( \boldsymbol C^{-1}_{\boldsymbol x}+\boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} \boldsymbol H ^{} \right )}^{-1} \left( \boldsymbol C^{-1}_{\boldsymbol x}\boldsymbol \mu_{\boldsymbol x}+\boldsymbol H^T \boldsymbol C_{\boldsymbol w}^{-1}\boldsymbol{y } \right) \\ \boldsymbol C_{\boldsymbol x|\boldsymbol y} &= {\left ( \boldsymbol C^{-1}_{\boldsymbol x}+\boldsymbol H^T \boldsymbol C_{\boldsymbol w}^{-1} \boldsymbol H ^{} \right )}^{-1} \end{aligned} \tag{17} E[xy]Cxy=(Cx1+HTCw1H)1(Cx1μx+HTCw1y)=(Cx1+HTCw1H)1(17)

总结

贝叶斯线性模型:
y = H x + w \boldsymbol y = \boldsymbol {H x} + \boldsymbol w y=Hx+w

其中 y ∈ R N \boldsymbol{y} \in \mathbb{R}^{N} yRN H ∈ R N × p \boldsymbol{H} \in \mathbb{R}^{N \times p} HRN×p已知, x ∈ R p \boldsymbol x \in \mathbb{R}^{p} xRp x ∼ N ( μ x , C x ) \boldsymbol x \sim \mathcal{N}(\boldsymbol{ \mu_x}, \boldsymbol{C_x}) xN(μx,Cx) w ∈ R N \boldsymbol{w} \in \mathbb{R}^N wRN是噪声向量, w ∼ N ( 0 , C w ) \boldsymbol w \sim \mathcal{N}(\boldsymbol 0, \boldsymbol {C_w}) wN(0,Cw) x \boldsymbol x x w \boldsymbol{w} w相互独立。

(1) x , y \boldsymbol {x,y} x,y的联合分布
[ x y ] ∼ N ( [ μ H μ ] , [ C x C x H T H C x H C x H T + C w ] ) \left[ \begin{array}{c} \boldsymbol{x}\\ \boldsymbol{y}\\ \end{array} \right] \sim \mathcal{N} \left( \left[ \begin{array}{c} \boldsymbol{\mu }\\ \boldsymbol{H\mu }\\ \end{array} \right] ,\left[ \begin{matrix} \boldsymbol{C}_{\boldsymbol{x}}& \boldsymbol{C}_{\boldsymbol{x}}\boldsymbol{H}^T\\ \boldsymbol{HC}_{\boldsymbol{x}}& \boldsymbol{HC}_{\boldsymbol{x}}\boldsymbol{H}^T+\boldsymbol{C}_{\boldsymbol{w}}\\ \end{matrix} \right] \right) [xy]N([μHμ],[CxHCxCxHTHCxHT+Cw])

(2) y \boldsymbol {y} y的边际分布
y ∼ N ( H μ , H C x H T + C w ) \boldsymbol y \sim \mathcal{N}(\boldsymbol{H \mu},\boldsymbol{HC}_{\boldsymbol{x}}\boldsymbol{H}^T+\boldsymbol{C}_{\boldsymbol{w}}) yN(Hμ,HCxHT+Cw)

(3) y ∣ x \boldsymbol y | \boldsymbol x yx似然分布
y ∣ x ∼ N ( y ; H x , C w ) \boldsymbol y | \boldsymbol x \sim \mathcal{N} \left (\boldsymbol y; \boldsymbol {Hx}, \boldsymbol C_{\boldsymbol w} \right) yxN(y;Hx,Cw)

我们要说明上述似然函数是由标准的联合分布推导的,很巧的是,该式与贝叶斯线性模型 y = H x + w \boldsymbol y = \boldsymbol {H x} + \boldsymbol w y=Hx+w直观意义上的似然形式一致( x \boldsymbol{x} x w \boldsymbol{w} w都服从高斯分布是大前提,对于一般的 x \boldsymbol{x} x的分布,我现在还不确定是否可以直接这样写,感觉应该是不能,具体问题可能得写出(2)的线性转换模型,再根据矩母函数和相应的逆变换判断

(4) x ∣ y \boldsymbol x | \boldsymbol y xy后验分布
E [ x ∣ y ] = a μ x + C x H T ( H C x H T + C w ) − 1 ( y − H μ x ) = b μ x + ( C x − 1 + H T C w − 1 H ) − 1 H T C w − 1 ( y − H μ x ) = c ( C x − 1 + H T C w − 1 H ) − 1 ( C x − 1 μ x + H T C w − 1 y ) \begin{aligned} \mathbb{E} [\boldsymbol x| \boldsymbol y] & \overset{a}{=} \boldsymbol \mu_{\boldsymbol x} + \boldsymbol C_{\boldsymbol x} \boldsymbol H^T \left ( \boldsymbol H \boldsymbol C_{\boldsymbol x} \boldsymbol H^T + \boldsymbol C_{\boldsymbol w} \right )^{-1} (\boldsymbol y - \boldsymbol H \boldsymbol \mu_{\boldsymbol x}) \\ & \overset{b}{=} \boldsymbol \mu_{\boldsymbol x} + \left ( \boldsymbol C^{-1}_{\boldsymbol x} + \boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} \boldsymbol H \right)^{-1} \boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} (\boldsymbol y - \boldsymbol H \boldsymbol \mu_{\boldsymbol x}) \\ & \overset{c}{=} {\left ( \boldsymbol C^{-1}_{\boldsymbol x}+\boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} \boldsymbol H ^{} \right )}^{-1} \left( \boldsymbol C^{-1}_{\boldsymbol x}\boldsymbol \mu_{\boldsymbol x}+\boldsymbol H^T \boldsymbol C_{\boldsymbol w}^{-1}\boldsymbol{y } \right) \end{aligned} E[xy]=aμx+CxHT(HCxHT+Cw)1(yHμx)=bμx+(Cx1+HTCw1H)1HTCw1(yHμx)=c(Cx1+HTCw1H)1(Cx1μx+HTCw1y)

上述 ( a , b , c ) (a,b,c) (a,b,c)三式是等价的,我们常见的应该是式(a)。这三个式子与LMMSE的形式也是等价的(只是形式上等价,与LMMSE的推导过程无关),因为后验分布是高斯分布,所以LMMSE与MMSE等价。
与之对应的协方差矩阵:
C x ∣ y = a C x − C x H T ( H C x H T + C w ) − 1 H C x = b , c ( C x − 1 + H T C w − 1 H ) − 1 \begin{aligned} \boldsymbol C_{\boldsymbol x|\boldsymbol y} & \overset{a}{=}\boldsymbol C_{\boldsymbol x} - \boldsymbol C_{\boldsymbol x} \boldsymbol H^T \left ( \boldsymbol H \boldsymbol C_{\boldsymbol x} \boldsymbol H^T + \boldsymbol C_{\boldsymbol w} \right )^{-1} \boldsymbol H \boldsymbol C_{\boldsymbol x} \\ & \overset{b,c}{=}\left ( \boldsymbol C^{-1}_{\boldsymbol x} + \boldsymbol H^T \boldsymbol C^{-1}_{\boldsymbol w} \boldsymbol H \right)^{-1} \end{aligned} Cxy=aCxCxHT(HCxHT+Cw)1HCx=b,c(Cx1+HTCw1H)1

上式协方差的标号与 E [ x ∣ y ] \mathbb{E} [\boldsymbol x| \boldsymbol y] E[xy]的的标号相对应。

  • 19
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值