联合高斯分布(Joint Gaussian)的推导

x ∼ N ( 0 , σ 2 ) , y ∣ x ∼ N ( x , c 2 ) x \sim \mathcal{N}(0, \sigma^2), y|x \sim \mathcal{N}(x, c^2) xN(0,σ2),yxN(x,c2)

f ( y ) = ∫ x f ( y ∣ x ) f ( x ) d x = ∫ x 1 2 π c e − ( y − x ) 2 2 c 2 1 2 π σ e − x 2 2 σ 2 d x = 1 2 π c e − y 2 2 c 2 ∫ x 1 2 π σ e − ( σ 2 + c 2 ) x 2 2 σ 2 c 2 + y x c 2 d x = 1 2 π c e − y 2 2 c 2 ∫ x 1 2 π σ e − x 2 − 2 σ 2 y σ 2 + c 2 x + ( σ 2 y σ 2 + c 2 ) 2 2 σ 2 c 2 σ 2 + c 2 + σ 2 y 2 2 c 2 ( σ 2 + c 2 ) d x = 1 2 π σ 2 + c 2 e − y 2 2 c 2 + σ 2 y 2 2 c 2 ( σ 2 + c 2 ) ∫ x 1 2 π σ c σ 2 + c 2 e − ( x − σ 2 y σ 2 + c 2 ) 2 2 σ 2 c 2 σ 2 + c 2 d x = 1 2 π σ 2 + c 2 e − y 2 2 ( σ 2 + c 2 ) \begin{aligned} f(y) &= \int_x f(y | x) f(x) dx \\ &= \int_x \frac{1}{\sqrt{2\pi} c} e^{-\frac{(y-x)^2}{2 c^2}} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{x^2}{2 \sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi} c} e^{-\frac{y^2}{2 c^2}} \int_x \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(\sigma^2 + c^2)x^2}{2 \sigma^2 c^2} + \frac{yx}{c^2}} dx \\ &= \frac{1}{\sqrt{2\pi} c} e^{-\frac{y^2}{2 c^2}} \int_x \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{x^2 - 2 \frac{\sigma^2 y}{\sigma^2 + c^2} x + (\frac{\sigma^2 y}{\sigma^2 + c^2})^2}{2 \frac{\sigma^2 c^2}{\sigma^2 + c^2}} + \frac{\sigma^2y2}{2 c^2 (\sigma^2 + c^2)}} dx \\ &= \frac{1}{\sqrt{2\pi} \sqrt{\sigma^2 + c^2}} e^{-\frac{y^2}{2 c^2} +\frac{\sigma^2y2}{2 c^2 (\sigma^2 + c^2)}} \int_x \frac{1}{\sqrt{2\pi} \frac{\sigma c}{\sqrt{\sigma^2 + c^2}}} e^{-\frac{(x - \frac{\sigma^2 y}{\sigma^2 + c^2} )^2}{2 \frac{\sigma^2 c^2}{\sigma^2 + c^2}}} dx \\ &= \frac{1}{\sqrt{2\pi} \sqrt{\sigma^2 + c^2}} e^{-\frac{y^2}{2(\sigma^2 + c^2)}} \end{aligned} f(y)=xf(yx)f(x)dx=x2π c1e2c2(yx)22π σ1e2σ2x2dx=2π c1e2c2y2x2π σ1e2σ2c2(σ2+c2)x2+c2yxdx=2π c1e2c2y2x2π σ1e2σ2+c2σ2c2x22σ2+c2σ2yx+(σ2+c2σ2y)2+2c2(σ2+c2)σ2y2dx=2π σ2+c2 1e2c2y2+2c2(σ2+c2)σ2y2x2π σ2+c2 σc1e2σ2+c2σ2c2(xσ2+c2σ2y)2dx=2π σ2+c2 1e2(σ2+c2)y2

因此 y ∼ N ( 0 , σ 2 + c 2 ) y \sim \mathcal{N}(0, \sigma^2 + c^2) yN(0,σ2+c2)

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值