Tensorflow——TFRecord文件的制作及读取

Tensorflow——TFRecord文件的制作及读取

一、TFRecord文件的制作

TFRecord是TensorFlow提供的统一存储数据的一种格式。在训练一个深度学习的模型之前,往往需要先制作数据集。这里主要介绍在TensorFlow框架下,将图像数据库及其对应的标签制作成TFRecord文件,便于图像数据的输入。直接贴个样例代码讲解吧。

import tensorflow as tf
import os
from PIL import Image

#———————————————————————————TFRecord文件制作———————————————————————————————
image_train_path = '' # label路径,label是txt文件
label_train_path = ''
image_test_path = '' # 图像文件路径
label_test_path = ''
data_path = './data' # .tfrecords 文件保存路径

tfRecord_train = './data/train.tfrecords' # tfrecord文件名
tfRecord_test = './data/test.tfrecords'


def write_tfRecord(tfRecordName, image_path, label_path):
    writer = tf.python_io.TFRecordWriter(tfRecordName)
    num_pic = 0  #计数器
    f = open(label_path,'r')  #读label '.txt'文件:每行由图片名与标签组成
    contents = f.readlines()  #获取整个文件
    f.close()
    for content in contents:  # 遍历每行的内容
        value = content.split(' ')  # 空格分隔每行的图片名与标签,分割后组成列表value
        img = Image.open(image_path + value[0])  # 图片文件的路径
        img_raw = img.tobytes()  # 将图片转换成二进制数据
        labels = float(value[1])
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值