数学表达式1

课程训练

Day1

作业1

问题:描述你在学习、使用数学表达式时的困难, 可举例说明.

1.需要用到的符号不好找。比如 \hat,单知道长什么样子,真要用的时候只能挨着挨着查符号。
2.部分符号有多个参数(程序员的理解),比如分数: 1 2 \frac {1}{2} 21, 表达式为 \frac {1}{2},分子分母一定要使用花括号括住才行。
3.较长的表达式很难阅读。花括号在一些时候不是必须的,但可以帮助我书写和检查表达式,要合理使用。

作业2

问题1:令 A = { 3 , 5 } \mathbf{A} = \{3, 5\} A={3,5}, 写出 2 A 2^{\mathbf{A}} 2A

2 A = { ∅ , { 3 } , { 5 } , { 3 , 5 } } 2^{\mathbf A} = \{\emptyset, \{3\}, \{5\}, \{3, 5\} \} 2A={,{3},{5},{3,5}}

问题2:展开 2 ∅ 2^{\emptyset} 2

2 ∅ = { ∅ } 2^{\emptyset} = \{\emptyset\} 2={}
值得一提的是: 2 { ∅ } = { ∅ , { ∅ } } 2^{\{\emptyset\}} = \{\emptyset, \{\emptyset\}\} 2{}={,{}}

问题3:令 A = { 5 , 6 , 7 , 8 , 9 } \mathbf{A} = \{5, 6, 7, 8, 9\} A={5,6,7,8,9}, 写出 A \mathbf{A} A 的其它两种表示法.

A = { 5 , 6 , … , 9 } \mathbf A = \{5, 6, \dots, 9\} A={5,6,,9}
A = [ 5..9 ] \mathbf A = [5..9] A=[5..9]

作业3

问题:自己出数据, 做一个 3 × 2 3 \times 2 3×2 2 × 4 2 \times 4 2×4 的矩阵乘法.

[ 0.7 0.4 0.8 0.2 0.1 0.5 ] × [ 0.5 0.7 1 0.2 0.3 0.5 0.4 0.8 ] = [ 0.47 0.69 0.86 0.46 0.46 0.66 0.88 0.32 0.20 0.32 0.30 0.42 ] \begin{bmatrix} 0.7 &0.4 \\ 0.8 &0.2 \\ 0.1 &0.5 \end{bmatrix} \times \begin{bmatrix} 0.5 &0.7 &1 &0.2 \\ 0.3 &0.5 &0.4 &0.8\\ \end{bmatrix} = \begin{bmatrix} 0.47 &0.69 &0.86 &0.46\\ 0.46 &0.66 &0.88 &0.32\\ 0.20 &0.32 &0.30 &0.42 \end{bmatrix} 0.70.80.10.40.20.5×[0.50.30.70.510.40.20.8]=0.470.460.200.690.660.320.860.880.300.460.320.42


Day2

作业4

问题1:令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分.

R = { ( a , b ) ∈ A × A ∣ a m o d    2 = b m o d    2 } \mathbf{R} = \{(a, b) \in \mathbf{A} \times \mathbf{A} \vert a \mod 2 = b \mod 2\} R={(a,b)A×Aamod2=bmod2}
R = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 1 ) , ( 5 , 9 ) , ( 8 , 2 ) , ( 9 , 1 ) , ( 9 , 5 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R} = \{(1, 5), (1, 9), (2, 8), (5, 1), (5, 9), (8, 2), (9, 1),(9, 5), (1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} R={(1,5),(1,9),(2,8),(5,1),(5,9),(8,2),(9,1),(9,5),(1,1),(2,2),(5,5),(8,8),(9,9)}
划分: P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal P = \{\{1, 5, 9\}, \{2, 8\}\} P={{1,5,9},{2,8}}

问题2 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1 R 2 \mathbf{R}_2 R2,并计算 R 1 ∘ R 2 \mathbf{R}_1 \circ \mathbf{R}_2 R1R2, R 1 + \mathbf{R}_1^+ R1+, R 1 ∗ \mathbf{R}_1^* R1

关系的乘积运算: R 2 ∘ R 1 = { ( x , y ) ∣ ∃ ( x , z ) ∈ R 1  and  ( z , y ) ∈ R 2 } \mathbf{R}_2 \circ \mathbf{R}_1 = \{(x, y) \vert \exists (x, z) \in \mathbf{R}_1 \textrm{ and } (z, y) \in \mathbf{R}_2\} R2R1={(x,y)(x,z)R1 and (z,y)R2}
现有 R 1 = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) , ( 9 , 8 ) } \mathbf R_1 = \{(1,5), (1,9), (2, 8), (5, 9), (9, 8)\} R1={(1,5),(1,9),(2,8),(5,9),(9,8)}
R 2 = { ( 9 , 5 ) , ( 8 , 1 ) , ( 2 , 1 ) } \mathbf R_2 = \{(9, 5), (8, 1), (2, 1)\} R2={(9,5),(8,1),(2,1)}

R 2 ∘ R 1 = { ( 1 , 5 ) , ( 2 , 1 ) , ( 5 , 5 ) , ( 9 , 1 ) } \mathbf R_2 \circ \mathbf R_1 = \{(1, 5), (2, 1), (5, 5), (9, 1)\} R2R1={(1,5),(2,1),(5,5),(9,1)}

R 1 2 = { ( 1 , 9 ) , ( 1 , 8 ) , ( 5 , 8 ) } \mathbf R_1^2 = \{(1, 9), (1, 8), (5, 8)\} R12={(1,9),(1,8),(5,8)}
R 1 3 = R 1 2 ∘ R 1 = { ( 1 , 8 ) } \mathbf R_1^3 = \mathbf R_1^2 \circ {\mathbf R_1} = \{(1, 8)\} R13=R12R1={(1,8)}
R 1 4 = R 1 3 ∘ R 1 = ∅ \mathbf R_1^4 = \mathbf R_1^3 \circ {\mathbf R_1} = \emptyset R14=R13R1=
R 1 5 = R 1 4 ∘ R 1 = ∅ \mathbf R_1^5 = \mathbf R_1^4 \circ {\mathbf R_1} = \emptyset R15=R14R1=

R 1 + = ⋃ i = 1 ∣ A ∣ R 1 i = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) , ( 9 , 8 ) , ( 1 , 8 ) , ( 5 , 8 ) } \mathbf R_1^+ = \bigcup_{i=1}^{|\mathbf A|}\mathbf R_1^i = \{(1,5), (1,9), (2, 8), (5, 9), (9, 8), (1, 8), (5, 8)\} R1+=i=1AR1i={(1,5),(1,9),(2,8),(5,9),(9,8),(1,8),(5,8)}
R 1 ∗ = R 1 + ∪ R 0 , R 0 = I A \mathbf R_1^* = \mathbf R_1^+ \cup \mathbf R^0, \mathbf R^0 = \mathbf I_{\mathbf A} R1=R1+R0,R0=IA
R 1 ∗ = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) , ( 9 , 8 ) , ( 1 , 8 ) , ( 5 , 8 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf R_1^* = \{(1,5), (1,9), (2, 8), (5, 9), (9, 8), (1, 8), (5, 8), (1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} R1={(1,5),(1,9),(2,8),(5,9),(9,8),(1,8),(5,8),(1,1),(2,2),(5,5),(8,8),(9,9)}

问题3:查阅粗糙集上下近似的定义并大致描述
帮助理解
根据知识判断对象 a a a 是否属于集合 X \mathbf X X,由三种情况: a a a 肯定属于集合 X \mathbf X X a a a 可能属于集合 X \mathbf X X 也可能不属于集合 X \mathbf X X a a a 不可能属于集合 X \mathbf X X。关于上下近似的具体定于如下:
U \mathbf U U 为论域(非空对象集合), I I I U \mathbf U U 中的等价关系, X ⊂ U \mathbf X \subset \mathbf U XU,则有:

集合 X \mathbf X X 关于关系 I I I 的下近似是根据享有的知识判断肯定属于X的对象所组成的最大集合,有时也称为 X \mathbf X X 的正区域,记为 P O S ( X ) POS(\mathbf X) POS(X) I ∗ = { x ∈ U ∣ I ( x ) ⊂ X } I_*=\{ x\in \mathbf U | I(x)\subset \mathbf X\} I={xUI(x)X}

集合 X \mathbf X X 关于 I I I 的上近似是由所有与 X \mathbf X X 相交的非空等效类 I ( x ) I(x) I(x)的并集,是哪些可能属于 X \mathbf X X 的对象的组成的最小集合:
I ∗ = { x ∈ U ∣ I ( x ) ∩ X ≠ ∅ } I^*=\{ x\in \mathbf U | I(x)\cap \mathbf X\neq \emptyset\} I={xUI(x)X=}
如果一个集合的上下近似相等,则该集合成为精确集合,否则称之为粗糙集

作业5

问题:举例说明你对函数的认识
在函数 y = 2 x y = 2x y=2x 中,称 x x x 为自变量, y y y 为因变量,当 x x x 取一个值的时候, y y y 的值也确定了。
同时,函数也可以描述为集合到集合的映射,即 f : R → R \mathcal f: R \to R f:RR, 函数表示为 y = f ( x ) y = \mathcal f(x) y=f(x),对于 ∈ R \in R R 的任意 y y y,都有唯一的 x ∈ R x \in R xR 与之对应。

作业6

自己给定一个矩阵并计算其各种范数.(书写上对于求和符号sum的上下标,文字内显示和作为重要表达式显示有所不同)
范数: ∥ X ∥ p = ( ∑ i , j ∣ x i j ∣ p ) 1 p \|\mathbf{X}\|_p = \left( \sum_{i, j} \vert x_{ij}\vert ^p \right)^\frac{1}{p} Xp=(i,jxijp)p1

有矩阵 X = [ 0 1 2 3 ] \mathbf X= \begin{bmatrix} 0 &1\\ 2 &3 \end{bmatrix} X=[0213]

l 0 \mathcal l_0 l0 范数:
∥ X ∥ 0 = ∣ { ( i , j ) ∣ x i j ≠ 0 } ∣ = 3 \|\mathbf{X}\|_0 =|\{(i, j) | x_{ij} \neq 0\}| = 3 X0={(i,j)xij=0}=3

l 1 \mathcal l_1 l1 范数:
∥ X ∥ 1 = ∑ i , j ∣ x i j ∣ = 0 + 1 + 2 + 3 = 6 \|\mathbf{X}\|_1 =\sum_{i,j}| x_{ij}| = 0+1+2+3 = 6 X1=i,jxij=0+1+2+3=6

l 2 \mathcal l_2 l2 范数:
∥ X ∥ 2 = ∑ i , j x i j 2 = 0 2 + 1 2 + 2 2 + 3 2 = 14 \|\mathbf{X}\|_2 =\sqrt{\sum_{i,j} {x_{ij}}^2} = \sqrt {0^2+1^2+2^2+3^2} =\sqrt{14} X2=i,jxij2 =02+12+22+32 =14

l ∞ \mathcal l_\infty l 范数:
∥ X ∥ ∞ = max ⁡ i , j ∣ x i j ∣ = 3 \|\mathbf{X}\|_{\infty} = \max_{i, j} \vert x_{ij} \vert = 3 X=maxi,jxij=3

作业7

解释推荐系统: 问题、算法与研究思路 2.1 中的优化目标
min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \min\sum_{(i,j) \in \Omega}(f(\mathbf x_i, \mathbf t_j) - r_{ij})^2 min(i,j)Ω(f(xi,tj)rij)2
的各符号及含义.

数据集和函数:
用户信息表: X = [ x 1 , … , x n ] T = [ x i j ] n × d u \mathbf X = [\mathbf x_1,\dots, \mathbf x_n]^\mathrm T = [x_{ij}]_{n \times d_u} X=[x1,,xn]T=[xij]n×du,每个用户具有 d u d_u du 个属性。
商品信息表: T = [ t 1 , … , t m ] T = [ t i j ] m × d t \mathbf T= [\mathbf t_1,\dots, \mathbf t_m]^\mathrm T = [t_{ij}]_{m \times d_t} T=[t1,,tm]T=[tij]m×dt,每个商品具有 d t d_t dt 个属性。
评分函数: f : R d u × R d t → R f:R^{d_u} \times R^{d_t} \to R f:Rdu×RdtR,有 d u d_u du 维属性的用户与有 d t d_t dt 维属性的商品的所有组合映射到评分结果

优化目标符号解释:
Ω \Omega Ω:用户 i i i 与商品 j j j 的组合,组合个数为 ∣ Ω ∣ |\Omega| Ω
x i \mathbf x_i xi: 用户 i i i 的属性集合
t j \mathbf t_j tj: 商品 j j j 的属性集合
f f f: 评分函数
r i j r_{ij} rij: 用户 i i i 对商品 j j j 的评分标签

优化目标解释:要使得所有训练的评分结果与评分标签的均方误差最小


Day3

作业8

问题1:将向量下标为偶数的分量 ( x 2 , x 4 , … ) (x_2, x_4, …) (x2,x4,)累加, 写出相应表达式.
有集合 x = [ x 1 . . x n ] \mathbf x = [x_1..x_n] x=[x1..xn]
向量分量累加: ∑ i = 1 n x i \sum_{i=1}^{n} x_i i=1nxi
下标为偶数的分量的累加: ∑ i m o d    2 = 0 x i \sum_{i \mod 2 = 0} x_i imod2=0xi

问题2:各出一道累加、累乘、积分表达式的习题, 并给出标准答案.

1)写出1开始的 n n n 个奇数之和 的表达式

∑ i = 1 n 2 i − 1 \sum_{i=1}^n 2i - 1 i=1n2i1

2)写出 1 2 ⋅ 2 3 ⋅ 3 4 … n n + 1 \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \dots \frac{n}{n+1} 213243n+1n 的表达式

∏ i = 1 n i i + 1 \prod_{i=1}^n \frac{i}{i + 1} i=1ni+1i

3)有一圆环,内外半径分别为 r 1 , r 2 , r 1 < r 2 r_1,r_2, r_1 < r_2 r1,r2,r1<r2,写出求圆环面积的积分表达式

π ∫ r 1 r 2 r 2 d r \pi\int_{r_1}^{r_2}r^2 \mathrm dr πr1r2r2dr

问题3:你使用过三重累加吗? 描述一下其应用

没有。
应用:
1.三维标签求 l 1 l_1 l1 范数(错,还是二重累加)
2.求质量密度按照某分布的三维物体的质量(其实是三重定积分

但是曾今做过模板计算,用到了三维数组。
在均匀的各向异性的导热介质中求解热传导方程,用离散网格形式表示分布在三维空间并随时间变化的温度,那么 t + 1 t + 1 t+1 时刻一个点的温度应该取决于 t t t 时刻该点附近若干个点的温度。如果取决于附近 7 个点的温度,则相当于求解 7 点模板计算问题。
在 7 点模板问题计算中,三维网格状态量 g 遵循迭代式:
g x , y , z ( t + 1 ) = a z z z g x , y , z ( t ) + a n z z g x − 1 , y , z ( t ) + a p z z g x + 1 , y , z ( t ) + a z n z g x , y − 1 , z ( t ) + a z p z g x , y + 1 , z ( t ) + a z z n g x , y , z − 1 ( t ) + a z z p g x , y , z + 1 ( t ) \begin{aligned} g_{x,y,z}^{(t+1)} = &a_{zzz}g_{x, y, z}^{(t)} \\+ & a_{nzz}g_{x-1, y, z}^{(t)} + a_{pzz}g_{x+1, y, z}^{(t)} + a_{znz}g_{x, y-1, z}^{(t)} \\+ & a_{zpz}g_{x, y+1, z}^{(t)} + a_{zzn}g_{x, y, z-1}^{(t)} + a_{zzp}g_{x, y, z+1}^{(t)} \end{aligned} gx,y,z(t+1)=++azzzgx,y,z(t)anzzgx1,y,z(t)+apzzgx+1,y,z(t)+aznzgx,y1,z(t)azpzgx,y+1,z(t)+azzngx,y,z1(t)+azzpgx,y,z+1(t)
a a a 为各个方向的系数。对每个点的迭代更新用到了三重循环。

问题4:给一个常用的定积分, 将手算结果与程序结果对比.
∫ 0 1 ( x 1 − x 2 ) d x = − 1 3 ( 1 − x 2 ) 3 2 ∣ 0 1 = 1 3 \int_{0}^{1}(x \sqrt{1 - x^2}) \mathrm dx = - \frac {1}{3}(1 - x^2)^{\frac{3}{2}} \big| _0^1 = \frac{1}{3} 01(x1x2 )dx=31(1x2)2301=31

程序:

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
    double x = 0;
    double deltax = 1e-2;
    double sum = 0;
    
    for (x = 0; x <= 1; x += deltax)
    {
        sum += x * sqrt(1 - x * x) * deltax;
    }

    cout << sum;
    return 0;
}

计算结果:0.333031 :
在这里插入图片描述

修改 Δ x = 0.0001 \Delta x = 0.0001 Δx=0.0001,即变量deltax = 1e-4,可以获得更高精度的结果:
在这里插入图片描述

作业9

推导
矩阵求导公式
对于线性回归,有优化目标:
arg min ⁡ w ∥ X w − Y ∥ 2 2 \argmin_{\mathbf w} \Vert \mathbf X \mathbf w - \mathbf Y \Vert_2^2 wargminXwY22
∥ X w − Y ∥ 2 2 = ( X w − Y ) T ( X w − Y ) = ( w T X T − Y T ) ( X w − Y ) = w T X T X w − w T X T Y − Y T X w + Y T Y \begin{aligned} \Vert \mathbf X \mathbf w - \mathbf Y \Vert_2^2 &= (\mathbf X \mathbf w - \mathbf Y)^\mathrm T(\mathbf X \mathbf w - \mathbf Y)\\ &=(\mathbf w^\mathrm T \mathbf X^\mathrm T - \mathbf Y^\mathrm T)(\mathbf X\mathbf w - \mathbf Y)\\ &=\mathbf w^\mathrm T \mathbf X^\mathrm T\mathbf X \mathbf w - \mathbf w^\mathrm T \mathbf X^\mathrm T \mathbf Y - \mathbf Y^\mathrm T \mathbf X \mathbf w + \mathbf Y^\mathrm T \mathbf Y \end{aligned} XwY22=(XwY)T(XwY)=(wTXTYT)(XwY)=wTXTXwwTXTYYTXw+YTY

有矩阵求导公式:
d x T A x d x = ( A + A T ) x d x T A d x = A d A x d x = A T \begin{aligned} \frac{\rm d\mathbf x^\mathrm T \mathbf A \mathbf x}{\rm d \mathbf x} &= (\mathbf A + \mathbf A^\mathrm T)\mathbf x\\ \frac{\rm d\mathbf x^\mathrm T \mathbf A}{\rm d \mathbf x} &= \mathbf A\\ \frac{\rm d\mathbf A \mathbf x}{\rm d \mathbf x} &= \mathbf A^\mathrm T \end{aligned} dxdxTAxdxdxTAdxdAx=(A+AT)x=A=AT

对优化目标求导:
∂ ( ∥ X w − Y ∥ 2 2 ) ∂ w = 2 X T X w − X T Y − X T Y = 2 X T X w − 2 X T Y \frac{\partial (\Vert \mathbf X \mathbf w - \mathbf Y \Vert_2^2)}{\partial \mathbf w} = 2\mathbf X^\mathrm T \mathbf X\mathbf w - \mathbf X^\mathrm T \mathbf Y - \mathbf X^\mathrm T \mathbf Y\\ = 2\mathbf X^\mathrm T \mathbf X\mathbf w - 2 \mathbf X^\mathrm T \mathbf Y w(XwY22)=2XTXwXTYXTY=2XTXw2XTY
为求极值,令导数等于 0,可得
w = ( X T X ) − 1 X T Y \mathbf w = (\mathbf X^\mathrm T \mathbf X)^{-1} \mathbf X^\mathrm T \mathbf Y w=(XTX)1XTY

问题:自己写一个小例子 ( n = 3 , m = 1 ) (n = 3, m = 1) (n=3,m=1) 来验证最小二乘法.
需要拟合的数据:

xy
12
24
36

建立模型: y = f ( x ) = a x + b y = f(x) = ax+b y=f(x)=ax+b
可修改为: y = f ( x ) = x 1 w 1 + x 2 w 2 y = f(x) = x_1w_1+x_2w_2 y=f(x)=x1w1+x2w2
数据集(在常数项, x 2 x_2 x2 直接等于1):
X = [ x i j ] 3 × 2 = [ 1 1 2 1 3 1 ] \mathbf X = [x_{ij}]_{3 \times 2} = \begin{bmatrix} 1 &1\\ 2 &1\\ 3 &1 \end{bmatrix} X=[xij]3×2=123111
标签:
Y = [ 2 , 4 , 6 ] T = [ 2 4 6 ] \mathbf Y = [2, 4, 6]^{\mathrm T} = \begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix} Y=[2,4,6]T=246
系数:
w = [ w 1 , w 2 ] T \mathbf w = [w_1, w_2]^\mathrm T w=[w1,w2]T

回归目标:
arg min ⁡ w ∣ ∣ X w − Y ∣ ∣ 2 2 \argmin_{\mathbf{w}} ||\mathbf{X} \mathbf{w} - \mathbf{Y}||_2^2 wargminXwY22

∣ ∣ X w − Y ∣ ∣ 2 2 ||\mathbf{X} \mathbf{w} - \mathbf{Y}||_2^2 XwY22 求导,且导数值为 0 时,可得最优的 w \mathbf w w,得到公式:
w = ( X T X ) − 1 X T Y \mathbf w = (\mathbf X^\mathrm T \mathbf X)^{-1} \mathbf X^\mathrm T \mathbf Y w=(XTX)1XTY

以下是计算验证部分:
X T X = [ 1 2 3 1 1 1 ] × [ 1 1 2 1 3 1 ] = [ 14 6 6 3 ] \mathbf X^\mathrm T \mathbf X= \begin{bmatrix} 1 &2 &3\\ 1 &1 &1 \end{bmatrix} \times \begin{bmatrix} 1 &1\\ 2 &1\\ 3 &1 \end{bmatrix} = \begin{bmatrix} 14 &6\\ 6 &3 \end{bmatrix} XTX=[112131]×123111=[14663]
X T X \mathbf X^\mathrm T \mathbf X XTX 的逆为 N = [ a b c d ] \mathbf N = \begin{bmatrix} a &b\\ c &d \end{bmatrix} N=[acbd] ,那么:
[ 14 6 6 3 ] × [ a b c d ] = [ 14 a + 6 c 14 b + 6 d 6 a + 3 c 6 b + 3 d ] = [ 1 0 0 1 ] \begin{bmatrix} 14 &6\\ 6 &3 \end{bmatrix} \times \begin{bmatrix} a &b\\ c &d \end{bmatrix} = \begin{bmatrix} {14a+6c} &{14b+6d}\\ {6a+3c} &{6b+3d} \end{bmatrix} = \begin{bmatrix} 1 &0\\ 0 &1 \end{bmatrix} [14663]×[acbd]=[14a+6c6a+3c14b+6d6b+3d]=[1001]
联立得: N = [ a b c d ] = [ 1 2 − 1 − 1 7 3 ] \mathbf N = \begin{bmatrix} a &b\\ c &d \end{bmatrix} = \begin{bmatrix} \frac{1}{2} &-1\\ -1 &\frac{7}{3} \end{bmatrix} N=[acbd]=[211137]

最后该逆矩阵乘以 X T Y \mathbf X^{\mathrm T} \mathbf Y XTY
w = N X T Y = [ 1 2 − 1 − 1 7 3 ] × [ 1 2 3 1 1 1 ] × [ 2 4 6 ] = [ 2 0 ] \mathbf w = \mathbf N \mathbf X^{\mathrm T} \mathbf Y = \begin{bmatrix} \frac{1}{2} &-1\\ -1 &\frac{7}{3} \end{bmatrix} \times \begin{bmatrix} 1 &2 &3\\ 1 &1 &1 \end{bmatrix} \times \begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix} = \begin{bmatrix} 2\\ 0 \end{bmatrix} w=NXTY=[211137]×[112131]×246=[20]
拟合得到函数: y = f ( x ) = 2 x + 0 y = f(x) = 2x + 0 y=f(x)=2x+0

作业10

问题:自己推导一遍, 并描述这个方法的特点 (不少于 5 条).
1.适用于二分类问题
2.使用sigmoid函数,将点到超平面的距离转换为概率。使得计算损失时可导。
3.优化目标表达式为一般性,直接涵盖两种分类的结果。利于建立统一的优化目标。
4.用log函数将乘积运算转为加法运算,方便了计算。
5.对所有对象进行优化。
6.采用梯度下降求参。


作业N

问题:找出论文符号系统的矛盾

整理: M M M 个特征, N N N 个对象, 每个对象有一个长度为 q q q 的二进制码,二进制码有 N N N

矛盾1
有对象集合 O = { o i } i = 0 N \mathbf O = \{o_i\}_{i=0}^N O={oi}i=0N, 与二进制矩阵 B = { b i } i = i N ∈ { − 1 , 1 } q × N \mathbf B = \{b_i\}_i=i^N \in \{-1, 1\}^{q \times N} B={bi}i=iN{1,1}q×N 有关。在描述对象集合 O \mathbf O O 时, i i i 的起始值为 0 可能有问题

矛盾2
对于二进制矩阵 B \mathbf B B 和 功能 φ : X → B φ:\mathbf X \to \mathbf B φ:XB,个人理解为通过特征集合获取到二进制结果。表达式出现疑问:

有表达式: B = { b i } i = i N ∈ { − 1 , 1 } q × N \mathbf B = \{b_i\}_i=i^N \in \{-1, 1\}^{q \times N} B={bi}i=iN{1,1}q×N,理解每个对象都有一个长度为 q q q 的二进制的数据。
又有表达式:在这里插入图片描述

X \mathbf X X 理解为整个特征集合, 那么 m m m 的位置应该是 M M M N N N 其中之一。既然特征集合 X \mathbf X X 中有 M M M 种特征,这里应该更倾向于 M M M 吧。

矛盾3
文章并未出现对 X n \mathbf X_n Xn 的解释。根据对功能 F \mathcal F F 的解释,参数为整个对象集合,理解为特征集合的 X ( n ) X^{(n)} X(n) 便可以,但是 N N N 应该改为 M M M
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值