1. 前言
argparse:是python用于解析命令行参数和选项的标准模块
例如 python parseTest.py input.txt output.txt --user=name --port=8080
使用步骤:
1:import argparse
2:parser = argparse.ArgumentParser()
3:parser.add_argument()
4:parser.parse_args()
每一个add_argument方法对应一个你要关注的参数或选项;最后调用
parse_args() 方法进行解析
其中命令行参数如果没给定,且没有设置defualt,则出错。但是如果是选项的话,则设置为None
torch.utils.data.DataLoader:PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口,
注意:
该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入,
因此该接口有点承上启下的作用,比较重要。
2. test.py
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from deform_conv import DeformConv2D
from time import time
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--test-batch-size', type=int, default=32, metavar='N',
help='input batch size for testing (default: 32)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
'''
编写与设备无关的代码
(可用时受益于 GPU 加速,不可用时会倒退回 CPU)时,选择并保存适当的 torch.device, 不失为一种好方法,它可用于确定存储张量的位置。
device = torch.device('cuda' if args.cuda else 'cpu')
'''
torch.manual_seed(args.seed) #为CPU设置种子用于生成随机数,以使得结果是确定的
if args.cuda:
'''为当前GPU设置随机种子;
如果使用多个GPU,应该使用torch.cuda.manual_seed_all()为所有的