EnlightenGAN: Deep Light Enhancement without Paired Supervision
代码 https://github.com/VITA-Group/EnlightenGAN
本文运行环境:python3.8+pytorch1.9.0,其他的直接在终端pip install -r requirement.txt 就行(并不用完全要求和github上作者的一样,比他版本高的就行)
1. 打开visidom.server:
打开一个终端,Windows系统则直接执行pyhton -m visdom.server -port=8097,然后再打开另一个终端,在这个终端里进行其他操作。
2.创建测试文件目录:
|——test_dataset
|——testA
|——testB
结构如上,需要测试的图像放在/testA
文件夹下,为了使程序正常运行,需确保在/testB
文件夹下至少有一张任意图像(test_dataset文件与代码文件目录平级,如图1.1 测试文件目录:D:\EnlightenGAN-master\test_dataset,代码文件目录:D:\EnlightenGAN-master\EnlightenGAN-master)
图1.1
3.代码修改:
在predict.py
中,把if __name__ == '__main__':添加进以下代码
4,以下图目录结构创建文件夹
checkpoints/enlightening和model
把提前下载好的预训练模型200_net_G_A.pth和VGG模型按上图方式放入文件夹
5,开始测试
在终端输入python scripts/script.py --predict开始进行测试。
增强结果在ablation\enlightening\test_200\images中查看