ADNI数据集介绍

http://blog.sciencenet.cn/blog-1969089-1046865.html
(1)ADNI 1:

开发改进的方法,为获取老年痴呆症(AD)、轻度认知障碍(MCI)和老年人对照患者的纵向、多位点MRI和PET数据制定统一标准
获得一般可访问的数据仓库,描述大脑结构和代谢的纵向变化,以及临床/认知和生物标志物数据,以验证影像学替代物
在涉及这些患者的试验中,开发出能够最大限度地确定治疗效果的方法
测试基于临床和生物标记数据的一系列假设

(2)ADNI GO:

通过招募200名AD症状最轻微的患者(EMCI)来定义和描述MCI之前的AD谱阶段
对ADNI1和新入组EMCI受试者的CN和LMCI受试者进行F18淀粉样蛋白成像。FDG PET将与F18淀粉样蛋白成像联合进行
建立一个全国性的F18淀粉样蛋白成像网络,测试关于脑淀粉样蛋白积累的流行程度和严重程度及其与临床状态、MRI、FDG-PET、CSF和ADNI1血浆生物标志物的变化的关系的假设
在基线、第3个月、第6个月和第12个月收集所有新入组的受试者的3T MRI
对来自ADNI1的约500名LMCI和认知正常的受试者进行纵向临床/认知和1.5T MRI研究,为期2年
收集和分析所有新入组的EMCI和随访受试者的血液和脑脊液生物标志物
采集血液样本进行DNA和RNA提取。新入组的受试者还将采集细胞永生化和APOE基因分型的样本

(3)ADNI 2:

随着病理的发展,确定阿尔茨海默氏病(AD)的临床、影像学、遗传和生化生物标志物特征之间的关系
为AD的神经科学提供信息,识别可用于临床试验的诊断和预后标记和结果度量,并帮助开发最有效的临床试验方案
制定统一标准,获取AD、MCI和老年人对照患者纵向多位点MRI和PET数据
对550名新入组的受试者进行纵向临床、认知、MRI、PET (18F-Florbetapir和FDG)和血液和脑脊液生物标志物研究,并对ADNI1和ADNI的约700名受试者继续这些研究5年
采集血液样本进行DNA和RNA提取。新入组的受试者还将采集细胞永生化和APOE基因分型的样本
通过参加尸检的ADNI1、ADNI GO和ADNI2参与者的神经病理学检查,验证临床诊断、影像学和生物标志物替代物

(4)ADNI 3:

认知和相关生物标志物的纵向变化
认知衰退的预测
通过将结果与标准的临床测量和病理学相关联,验证基线和纵向获得的生物标志物测量结果
确定注意认知下降和AV-1451 PET (tau PET)的最佳结果措施,认知下降的预测因子,认知正常参与者(二级临床前AD试验)、MCI患者(前驱症状AD试验)和AD引起的早期痴呆患者的临床试验的纳入/排除标准
确定在AD大脑和基因中发现的其他已知疾病蛋白以及新发现的基因、蛋白质和分析物的作用,这些分析物提供了关于AD发病/诊断的有用信息
在这里插入图片描述
ADNI1:
I. only sMRI;

II. scanns were scanned using either 1.5T or 3.0T scanner
ADNI2/GO:
I. sMRI, fMRI, and DTI. DTI scans are available only from ADNI 2/GO subjects who were scanned with a GE Systems MR Scanner.

II. All participants newly enrolled in ADNI2 are scanned using the 3T MRI scanning protocol.

III. ADNI2 participants are scanned at screening, 3 months from the screening MRI, and within two weeks before or after Month 6 and subsequent annual visits.
ADNI3:
Note: When searching the database for baseline or “Timepoint 1″ data, users should select both “screening” and “baseline” from the visit selection box.
在这里插入图片描述
在这里插入图片描述
ADNI中的扫描是在两种不同的特斯拉扫描仪上进行的,即飞利浦医疗系统和西门子
飞利浦医疗系统扫描的EPI序列为144个体积,场强=3.0特斯拉,翻转角=80.0°,TE=30.0ms,TR=3000.0ms,64×65矩阵,6720.0层厚度为3.31mm的静止状态fMRI
用飞利浦医学系统扫描仪进行扩展静息状态fMRI的EPI序列为:200体积,场强=3.0tesla,翻转角=90.0°,TE=30.0ms,TR=3000.0,64×65矩阵,9600.0层厚3.31mm
对于西门子扫描仪,EPI序列是197个体积,场强=3.0特斯拉,翻转角=80.0度,TE=30.0ms,TR=2999.99,448×448矩阵,以及197个3.4mm厚度的切片
(此处显示的信息与下载的经过处理的信息TE不一致)

  1. DocumentSummary.csv文件中DXCHANGE的值及对应的状态:

    1=Stable: NL to NL;
    
    2=Stable: MCI to MCI;
    
    3=Stable: Dementia to Dementia;
    
    4=Conversion: NL to MCI;
    
    5=Conversion: MCI to Dementia;
    
    6=Conversion: NL to Dementia;
    
    7=Reversion: MCI to NL;
    
    8=Reversion: Dementia to MCI;
    
    9=Reversion: Dementia to NL
    
### 关于ADNI数据集中MCI轻度认知障碍的研究方法 #### 获取和下载ADNI数据集的方法 为了访问ADNI数据库并获取关于MCI的数据,研究人员通常需要注册账号并通过官方网站申请权限。一旦获得批准,可以浏览不同类型的影像学资料和其他临床评估记录来筛选符合条件的对象群体。 对于具体到MCI类别的样本,在`DocumentSummary.csv`文件中有详细的诊断转换信息[^3]。例如,通过查看DXCHANGE字段的不同取值能够区分稳定不变或是发生转变的情况下的受试者情况: - `2`: 表明该对象处于稳定的轻度认知损伤阶段; - `4`, `5`, 和其他涉及向更严重状况发展的编号则可用于分析疾病进展模式。 #### 研究中使用的常见技术手段 针对MCI特别是其细分领域如EMCI(早期)与LMCI(晚期),常用的技术包括但不限于神经成像技术和生物标志物检测。这些工具帮助识别大脑结构变化趋势及功能异常特征,从而更好地理解病理机制和发展轨迹[^1]。 此外,机器学习算法也被广泛应用于此类研究当中。比如利用支持向量机(SVM)或其他分类器对来自EEG信号或结构性磁共振图像(sMRI)的信息进行处理,进而实现对健康对照组(HC), 阿茨海默病(AD) 及不同类型MCI之间的有效鉴别[^4]。 ```python import pandas as pd # 假设已经加载了必要的CSV文件 df = pd.read_csv('path_to_adni_data/DocumentSummary.csv') # 过滤出所有被标记为任何形式的MCI患者 mci_patients = df[df['DXCHANGE'].isin([2, 4, 5])] print(f"Total number of MCI patients: {len(mci_patients)}") ```
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值