3. 强化学习之——无模型的价值函数估计和控制

本文主要探讨了在未知马尔科夫决策过程(MDP)中的无模型强化学习,包括无模型预测(Model-free prediction)和无模型控制(Model-free control)。在无模型预测中,介绍了蒙特卡罗策略估计(Monte Carlo policy evaluation)和时域差分学习(Temporal Difference learning)。而在无模型控制中,讨论了如何在环境未知的情况下优化值函数,涉及MC方法的广义策略迭代和TD方法的广义策略迭代,如Sarsa和Q-Learning算法。文章还对比了DP、MC和TD方法的差异,并提供了相关代码实例链接。
摘要由CSDN通过智能技术生成

目录

本次课程主要内容

回顾上次课讲的马尔科夫决策过程

探讨什么是 model-free 

Model-free prediction:未知 MDP 情况下的策略估计(值函数估计)

Model-free control:未知 MDP 情况下的值函数优化


本次课程主要内容

model-free prediction:估计一个未知 MDP 模型的 value function

model-free control:优化一个未知 MDP 模型的 value function

回顾上次课讲的马尔科夫决策过程

什么叫MDP已知:Agent 已知奖励函数 R 和状态转移矩阵 P,这也是我们进行策略迭代policy iteration和值迭代value iteration寻找最佳策略的基本要求

策略迭代包含:policy evaluation + policy improvement(在这两个过程中都需要 R 和 P)

值迭代包含:optimal policy + policy extract(这两个过程也都需要 R 和 P)

探讨什么是 model-free 

我们之前所做的策略迭代和值迭代其实并没有和环境去交互,已知 MDP 其实就相当于我已知环境的模型了,我知道环境会怎样去变化怎样影响我,所以我完全在脑子里面想就好了啊,相当于 Agent 找到了一个捷径。

但是在真正的实际问题中,我们的 MDP 并不已知或者太大了不能进行计算,这也就要求用 Model-free 的方法去求解。

Model-free 无法获得 R 和 P,但是通过 agent 与环境的交互可以获得一系列的包含每一时刻状态、和它采取的动作和获得的奖励的轨迹:

Agent 要做的就是从这个轨迹中获得的信息,然后改进自己的策略获得更多的奖励

 

Model-free prediction:未知 MDP 情况下的策略估计(值函数估计)

方法一:蒙特卡罗策略估计(Monte Carlo policy evaluation)

在某种策略下从某些状态开始进行轨迹的采样,最终可以获得很多轨迹,通过对轨迹中的获得的总回报求期望,最终得到的就是这个状态在这种策略下的价值函数

MC 方法不需要 MDP 的 dynamics 和 rewards,也不需要 dynamic programming 的那种 bootstrapping,也不要求状态的马尔科夫性。但是缺点是,由于是采样吗,所以轨迹不能够无限长。

MC 方法的算法流程为:

增量式 MC 方法算法流程:

DP(动态编程)方法 和 MC 方法在策略估计上的区别:

(1)对于 DP 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值