PyTorch GPU踩坑随笔

0x01 背景

B站大学选修PyTorch的时候试着运行深度学习模型。

本来我对CPU的算力有着很强的信心虽然只是intel i5 6600,选择安装了pytorch的cpuOnly版本。但是当我真正写了个三层神经网络跑MNIST的时候我发现跑了20分钟才跑了1%…

0x01 若干次失败

遂用conda怒下一个cuda11.2版本的pytorch,顺便去NVIDIA官网下了个11.2版本的CUDA。

运行时报错:

CUDA Error: no kernel image is available for execution on device

但是自己用spyder自带控制台测试

torch.__version__
torch.cuda.is_available()

都没有问题。然后搜了一手发现:我应该看看GPU匹不匹配当前软件版本…

在这里插入图片描述然后我百度了一手…
在这里插入图片描述
鸡哥,算了算了.jpg

进一步的查阅资料发现,我需要根据GPU型号来查找它的算力和支持的最高版本CUDA。

CUDA最高版本.jpg
在这里插入图片描述算力.jpg
在这里插入图片描述没办法,只能卸掉重装CUDA。在此期间:

  1. 试图安装10.1,10.0版本CUDA均失败(指无法用torch调用GPU);
  2. 查阅博客传送门后使用Anaconda安装Pytorch 1.2.0版本失败(似乎是因为我的python版本是3.8.x,太高了);
  3. 这时我查到了anaconda可以设置虚拟环境,但是我已经被Anaconda Navigator折磨得失去耐心。回滚Anaconda失败后怒卸Anaconda改用python官网下载的3.6.3版本;
  4. 最后使用了CUDA 9.0 和Pytorch1.3.0(从官网下的.whl文件并且使用pip安装),正常运行。

小结:

  • anaconda navigator在图形界面上实现包的更新、删除操作不太方便;
  • GPU GeForce 730 + CUDA 9.0 + pytorch1.3.0 + python3.6.3实测可用.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PenguinLeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值