0x01 背景
在B站大学选修PyTorch的时候试着运行深度学习模型。
本来我对CPU的算力有着很强的信心虽然只是intel i5 6600,选择安装了pytorch的cpuOnly版本。但是当我真正写了个三层神经网络跑MNIST的时候我发现跑了20分钟才跑了1%…
0x01 若干次失败
遂用conda怒下一个cuda11.2版本的pytorch,顺便去NVIDIA官网下了个11.2版本的CUDA。
运行时报错:
CUDA Error: no kernel image is available for execution on device
但是自己用spyder自带控制台测试
torch.__version__
torch.cuda.is_available()
都没有问题。然后搜了一手发现:我应该看看GPU匹不匹配当前软件版本…
然后我百度了一手…
鸡哥,算了算了.jpg
进一步的查阅资料发现,我需要根据GPU型号来查找它的算力和支持的最高版本CUDA。
CUDA最高版本.jpg
算力.jpg
没办法,只能卸掉重装CUDA。在此期间:
- 试图安装10.1,10.0版本CUDA均失败(指无法用torch调用GPU);
- 查阅博客传送门后使用Anaconda安装Pytorch 1.2.0版本失败(似乎是因为我的python版本是3.8.x,太高了);
- 这时我查到了anaconda可以设置虚拟环境,但是我已经被Anaconda Navigator折磨得失去耐心。回滚Anaconda失败后怒卸Anaconda改用python官网下载的3.6.3版本;
- 最后使用了CUDA 9.0 和Pytorch1.3.0(从官网下的.whl文件并且使用pip安装),正常运行。
小结:
- anaconda navigator在图形界面上实现包的更新、删除操作不太方便;
- GPU GeForce 730 + CUDA 9.0 + pytorch1.3.0 + python3.6.3实测可用.