sklearn风格的keras接口KerasClassifier、KerasRegressor

from tensorflow.keras.wrappers.scikit_learn import KerasRegressor, KerasClassifier

keras有这样一个sklearn风格的接口,可以满足sklearn风格的写法。
这里仅给出回归示例:
分类用法仅需修改为KerasClassifier,并根据需要修改为metrics=[‘acc’,‘mae’,‘mse’]等即可

def build_regresor_model(lr):
    """
    构建网络,并编译
    """
    model = Sequential()
    model.add(Dense(units=128, activation='tanh'))
    model.add(Dense(units=128, activation='tanh'))
    # 最后一层只有一个单元,没有激活
    model.add(Dense(units=1))
    model.compile(optimizer=optimizers.Adam(lr=lr),
                  loss='mse',
                  metrics=['mae', 'mse'],
                  )

    return model

regressor = KerasRegressor(build_fn=build_regresor_model, lr=0.001, batch_size=100, nb_epoch=20)
regressor.fit(x=train_X, y=train_Y)         # 训练
pred_val_Y = regressor.predict(val_X)   	# 在验证集上预测
  • build_regresor_model作为自定义函数的指针传入,
  • lr是自定义函数的传参,
  • batch_size是keras模型训练时的参数,批处理大小,
  • nb_epoch是keras模型训练时的参数,从 Keras 2.0 开始,nb_epoch参数已重命名为epochs,但是这个接口似乎被忽略了,还是nb_epoch,这点需要注意。

参考:
《What does nb_epoch in neural network stands for?》
《Value error during grid search - epochs is not a legal parameter》

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值