【机器学习-周志华】学习笔记-第九章

记录第一遍没看懂的
记录觉得有用的
其他章节:
        第一章
        第三章
        第五章
        第六章
        第七章
        第八章
        第九章
        第十章
        十一章
        十二章
        十三章
        十四章
        十五章
        十六章

        聚类是希望将样本划分成k个不相交的簇,且“簇内相似度”尽可能高,“簇间相似度”尽可能低。他的性能外部指标最常用的是Jaccard系数:
在这里插入图片描述
        距离度量的基本性质:
在这里插入图片描述
在这里插入图片描述
        k均值聚类算法采用的欧式距离,总体比较简单,容易实现;容但易受初始质心的影响。
在这里插入图片描述
        学习向量量化也是试图找到一组原型向量来刻画聚类结构, 但 LVQ 假设数据样本带有类别标记,学习过程利用样本的这些监督信息来辅助聚类。其主要思想就是,同一类就减小距离,否则就增大距离。
在这里插入图片描述
        高斯混合聚类的理解可以参考博客:【机器学习笔记】通俗易懂解释高斯混合聚类原理
        密度聚类的相关概念可以通过书中图9.8很好的理解:理解了概念以后,密度聚类其实就是先找到所有核心对象,然后随机选取一个核心对象,找出由其密度可达的样本,生成聚类簇,直到所有核心对象均被访问过为止。
在这里插入图片描述
        层次聚类就是每次合并距离最小的两个簇,然后再计算类间距离,直至合并到想要的簇数。
在这里插入图片描述

之前上个数据挖掘的选修课,关于聚类的的原理挺多都学过了,所以写的比较简略

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值