考研数学二公式

初等数学

因式分解

a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)

a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)

a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1 ) a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1}) anbn=(ab)(an1+an2b++abn2+bn1)

数列

等差数列

a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d

S n = 1 2 ( a 1 + a n ) S_n=\frac12(a_1+a_n) Sn=21(a1+an)

等比数列

a n = a 1 q n − 1 a_n=a_1q^{n-1} an=a1qn1

S n = a 1 ( 1 − q n ) 1 − q = a 1 − a n q 1 − q S_n={\frac{a_{1}(1-q^{n})}{1-q}}=\frac{a_1-a_nq}{1-q} Sn=1qa1(1qn)=1qa1anq

其他

1 2 + 2 2 + 3 2 + ⋯ + n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) 1^2+2^2+3^2+\cdots+n^2 = \frac16n(n+1)(2n+1) 12+22+32++n2=61n(n+1)(2n+1)

三角

倍角

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α \sin 2\alpha = 2\sin \alpha \cos \alpha sin2α=2sinαcosα

cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha cos2α=cos2αsin2α=2cos2α1=12sin2α

tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα

平方

sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1

sec ⁡ 2 α = tan ⁡ 2 α + 1 \sec^2 \alpha = \tan^2 \alpha + 1 sec2α=tan2α+1

csc ⁡ 2 α = cot ⁡ 2 α + 1 \csc^2 \alpha = \cot^2\alpha + 1 csc2α=cot2α+1

和差

sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta sin(α±β)=sinαcosβ±cosαsinβ

cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta cos(α±β)=cosαcosβsinαsinβ

tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} tan(α±β)=1tanαtanβtanα±tanβ

降阶

sin ⁡ 2 α = 1 2 ( 1 − cos ⁡ 2 α ) \sin^2 \alpha = \frac12(1-\cos 2\alpha) sin2α=21(1cos2α)

cos ⁡ 2 α = 1 2 ( 1 + cos ⁡ 2 α ) \cos^2 \alpha = \frac12(1+\cos 2\alpha) cos2α=21(1+cos2α)

几何

扇形面积: S = r 2 θ 2 S=\frac{r^2\theta}{2} S=2r2θ

扇形弧长: l = r θ l=r\theta l=rθ

球体体积: V = 4 3 π R 3 V=\frac43\pi R^3 V=34πR3
球体表面积: S = 4 π R 2 S=4\pi R^2 S=4πR2

基本不等式

a b ≤ a + b 2 a 2 + b 2 2 \sqrt{ab}\leq\frac{a+b}2\sqrt{\frac{a^2+b^2}2} ab 2a+b2a2+b2

a b c 3 ≤ a + b + c 3 ≤ a 2 + b 2 + c 2 3 \sqrt[3]{abc}\leq\frac{a+b+c}3\leq\sqrt{\frac{a^2+b^2+c^2}3} 3abc 3a+b+c3a2+b2+c2

( a c + b d ) 2 ≤ ( a 2 + b 2 ) ( c 2 + d 2 ) (ac+bd)^2\leq(a^2+b^2)(c^2+d^2) (ac+bd)2(a2+b2)(c2+d2)

一元微分

定义式

f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0) = \lim\limits_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = \lim\limits_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} f(x0)=Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0)

Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)

d y = f ′ ( x 0 ) d x \text{d}y=f'(x_0)\text{d}x dy=f(x0)dx

Δ y − d y = o ( Δ x ) \Delta y-\text{d}y=o(\Delta x) Δydy=o(Δx)

基本公式(5+10)

( x a ) ′ = a x a − 1 , a > 0 (x^a)'=ax^{a-1}, a>0 (xa)=axa1,a>0

( a x ) ′ = a x ln ⁡ a (a^x)'=a^x\ln a (ax)=axlna

( e x ) ′ = e x (e^x)'=e^x (ex)=ex

( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_ax)'=\frac1{x\ln a} (logax)=xlna1

( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln |x|)'=\frac1x (lnx)=x1

( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx

( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx

( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2x (tanx)=sec2x

( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2x (cotx)=csc2x

( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx

( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx

( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac1{\sqrt{1-x^2}} (arcsinx)=1x2 1

( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac1{\sqrt{1-x^2}} (arccosx)=1x2 1

( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\frac1{1+x^2} (arctanx)=1+x21

( arccot  x ) ′ = − 1 1 + x 2 (\text{arccot }x)'=-\frac1{1+x^2} (arccot x)=1+x21

高阶导数

( 1 a x + b ) ( n ) = ( − 1 ) n n ! a n ( a x + b ) n + 1 (\frac{1}{ax+b})^{(n)}=\frac{(-1)^nn!a^n}{(ax+b)^{n+1}} (ax+b1)(n)=(ax+b)n+1(1)nn!an

莱布尼茨公式 ( u v ) ( n ) = ∑ k = 0 n C n k u k v ( n − k ) (uv)^{(n)} = \sum\limits_{k=0}^n C_n^k u^kv^{(n-k)} (uv)(n)=k=0nCnkukv(nk)

中值定理

介值: m ≤ μ ≤ M ⇒ f ( ξ ) = μ m\leq\mu\leq M \Rightarrow f(\xi) = \mu mμMf(ξ)=μ

零点: f ( a ) ⋅ f ( b ) < 0 ⇒ f ′ ( ξ ) = 0 f(a)\cdot f(b) < 0 \Rightarrow f'(\xi) = 0 f(a)f(b)<0f(ξ)=0

费马: x = x 0 x=x_0 x=x0处连续可导取极值 ⇒ f ′ ( x 0 ) = 0 \Rightarrow f'(x_0)=0 f(x0)=0(充分不必要条件)

罗尔: f ( a ) = f ( b ) ⇒ f ′ ( ξ ) = 0 f(a)=f(b)\Rightarrow f'(\xi) = 0 f(a)=f(b)f(ξ)=0

拉格朗日: f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a) = f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

柯西: f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

泰勒: f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) ( x − x 0 ) n n ! + f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 ( n + 1 ) ! f(x) = f(x_0) + f'(x_0)(x-x_0) + \cdots + \frac{f^{(n)}(x_0)(x-x_0)^n}{n!} + \frac{f^{(n+1)}(\xi)(x-x_0)^{n+1}}{(n+1)!} f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1

x 0 x_0 x0 0 0 0时的泰勒公式,称为麦克劳林公式: f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) ( x ) n n ! f(x) = \sum\limits_{n=0}^{\infty}\frac{f^{(n)}(0)(x)^n}{n!} f(x)=n=0n!f(n)(0)(x)n

麦克劳林展开式(5+5)

e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) , − ∞ < x < + ∞ e^x=\sum\limits^\infty_{n=0}\frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3), -\infty<x<+\infty ex=n=0n!xn=1+x+2!x2+3!x3+o(x3),<x<+

ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + x 3 3 + o ( x 3 ) , − 1 < x ≤ 1 \ln(1+x)=\sum\limits^\infty_{n=1}(-1)^{n-1}\frac{x^n}{n}=x-\frac{x^2}2+\frac{x^3}3+o(x^3), -1<x\leq1 ln(1+x)=n=1(1)n1nxn=x2x2+3x3+o(x3),1<x1

1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + o ( x 3 ) , − 1 < x < 1 \frac1{1+x}=\sum\limits^\infty_{n=0}(-1)^nx^n=1-x+x^2-x^3+o(x^3), -1<x<1 1+x1=n=0(1)nxn=1x+x2x3+o(x3),1<x<1

1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + o ( x 3 ) , − 1 < x < 1 \frac1{1-x}=\sum\limits^\infty_{n=0}x^n=1+x+x^2+x^3+o(x^3), -1<x<1 1x1=n=0xn=1+x+x2+x3+o(x3),1<x<1

( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + o ( x 3 ) (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+\frac{a(a-1)(a-2)}{3!}x^3+o(x^3) (1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+o(x3)

sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! + o ( x 5 ) , − ∞ < x < + ∞ \sin x=\sum\limits^\infty_{n=0}(-1)^n\frac{x^{2n+1}}{(2n+1)!}=x-\frac{x^3}{3!}+\frac{x^5}{5!}+o(x^5), -\infty<x<+\infty sinx=n=0(1)n(2n+1)!x2n+1=x3!x3+5!x5+o(x5),<x<+

cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) , − ∞ < x < + ∞ \cos x=\sum\limits^\infty_{n=0}(-1)^n\frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4), -\infty<x<+\infty cosx=n=0(1)n(2n)!x2n=12!x2+4!x4+o(x4),<x<+

tan ⁡ x = x + x 3 3 + o ( x 3 ) \tan x=x+\frac{x^3}3+o({x^3}) tanx=x+3x3+o(x3)

arctan ⁡ x = x − x 3 3 + x 5 5 + o ( x 3 ) \arctan x=x-\frac{x^3}3+\frac{x^5}{5}+o(x^3) arctanx=x3x3+5x5+o(x3)

arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) \arcsin x=x+\frac{x^3}{3!}+o(x^3) arcsinx=x+3!x3+o(x3)

一元微分的几何应用

渐近线

斜渐近线 a = lim ⁡ x → ∞ f ( x ) x a=\lim\limits_{x\to\infty}\frac{f(x)}x a=xlimxf(x) b = lim ⁡ x → ∞ [ f ( x ) − a x ] b=\lim\limits_{x\to\infty}[f(x)-ax] b=xlim[f(x)ax]

弧微分

直角坐标方程: d s = 1 + [ y ′ ( x ) ] 2 d x \text ds=\sqrt{1+[y'(x)]^2}\text dx ds=1+[y(x)]2 dx

参数方程: d s = [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t \text ds=\sqrt{[x'(t)]^2+[y'(t)]^2}\text dt ds=[x(t)]2+[y(t)]2 dt

极坐标方程: d s = [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ \text ds=\sqrt{[r(\theta)]^2+[r'(\theta)]^2}\text d\theta ds=[r(θ)]2+[r(θ)]2 dθ

曲率、曲率半径

k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 k=\frac{|y''|}{[1+(y')^2]^{\frac32}} k=[1+(y)2]23y′′

R = 1 k = [ 1 + ( y ′ ) 2 ] 3 2 ∣ y ′ ′ ∣ R=\frac1k=\frac{[1+(y')^2]^{\frac32}}{|y''|} R=k1=y′′[1+(y)2]23

不定积分

基本公式(10+10)

∫ x k   d x = 1 k + 1 x k + 1 + C ,   k ≠ − 1 \int x^k\ dx=\frac{1}{k+1}x^{k+1}+C,\ k\not=-1 xk dx=k+11xk+1+C, k=1

∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x}\ dx=\ln|x|+C x1 dx=lnx+C

∫ e x   d x = e x + C \int e^x\ dx = e^x+C ex dx=ex+C

∫ a x   d x = 1 ln ⁡ a ⋅ a x + C \int a^x \ dx= \frac{1}{\ln a}\cdot a^x+C ax dx=lna1ax+C

∫ 1 a 2 + x 2   d x = 1 a arctan ⁡ x a + C \int \frac1{a^2+x^2}\ dx = \frac1a\arctan\frac xa+C a2+x21 dx=a1arctanax+C

∫ 1 a 2 − x 2   d x = arcsin ⁡ x a + C \int\frac1{\sqrt{a^2-x^2}}\ dx = \arcsin\frac xa+C a2x2 1 dx=arcsinax+C

∫ 1 x 2 − a 2   d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int\frac1{x^2-a^2}\ dx = \frac1{2a}\ln|\frac{x-a}{x+a}|+C x2a21 dx=2a1lnx+axa+C

∫ 1 a 2 − x 2   d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C \int\frac1{a^2-x^2}\ dx = \frac1{2a}\ln|\frac{x+a}{x-a}|+C a2x21 dx=2a1lnxax+a+C

∫ 1 x 2 − a 2   d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int\frac1{\sqrt{x^2-a^2}}\ dx = \ln|x+\sqrt{x^2-a^2}|+C x2a2 1 dx=lnx+x2a2 +C

∫ 1 x 2 + a 2   d x = ln ⁡ ∣ x + x 2 + a 2 ∣ + C \int\frac1{\sqrt{x^2+a^2}}\ dx = \ln|x+\sqrt{x^2+a^2}|+C x2+a2 1 dx=lnx+x2+a2 +C

∫ sin ⁡ x = − cos ⁡ x + C \int \sin x = -\cos x + C sinx=cosx+C

∫ cos ⁡ x = sin ⁡ x + C \int \cos x = \sin x + C cosx=sinx+C

∫ tan ⁡ x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int\tan x = -\ln|\cos x| + C tanx=lncosx+C

∫ cot ⁡ x = ln ⁡ ∣ sin ⁡ x ∣ + C \int\cot x = \ln|\sin x| + C cotx=lnsinx+C

∫ sec ⁡ x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int\sec x = \ln|\sec x +\tan x| + C secx=lnsecx+tanx+C

∫ csc ⁡ x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int\csc x = \ln|\csc x -\cot x| + C cscx=lncscxcotx+C

∫ sec ⁡ 2 x = tan ⁡ x + C \int \sec^2 x = \tan x + C sec2x=tanx+C

∫ csc ⁡ 2 x = − cot ⁡ x + C \int \csc^2 x = -\cot x + C csc2x=cotx+C

∫ sec ⁡ x tan ⁡ x = sec ⁡ x + C \int\sec x\tan x = \sec x + C secxtanx=secx+C

∫ csc ⁡ x cot ⁡ x = − csc ⁡ x + C \int\csc x\cot x = -\csc x + C cscxcotx=cscx+C

三角有理函数常用公式

1 + cos ⁡ x = 2 cos ⁡ 2 x 2 1+\cos x=2\cos^2\frac x2 1+cosx=2cos22x

1 + sin ⁡ x = ( sin ⁡ x 2 + cos ⁡ x 2 ) 2 1+\sin x=(\sin\frac x2+\cos\frac x2)^2 1+sinx=(sin2x+cos2x)2

sin ⁡ x + cos ⁡ x = 2 cos ⁡ ( x − π 4 ) \sin x+\cos x=\sqrt2\cos(x-\frac\pi4) sinx+cosx=2 cos(x4π)

1 1 + sin ⁡ x = 1 1 + cos ⁡ ( π 2 − x ) = 1 2 cos ⁡ 2 ( π 4 − 2 x ) = sec ⁡ 2 ( π 4 − 2 x ) \frac1{1+\sin x}=\frac1{1+\cos(\frac\pi2-x)}=\frac1{2\cos^2(\frac\pi4-\frac2x)}=\sec^2(\frac\pi4-\frac2x) 1+sinx1=1+cos(2πx)1=2cos2(4πx2)1=sec2(4πx2)

换元积分

第一类换元积分法

∫ f [ φ ( x ) ] φ ′ ( x ) d x = ∫ f [ φ ( x ) ] d [ φ ( x ) ] = u = φ ( x ) ∫ f ( u ) d u = F ( u ) + C = F [ φ ( x ) ] + C \int f[\varphi(x)]\varphi'(x)\text dx=\int f[\varphi(x)]\text d[\varphi(x)]\overset{u=\varphi(x)}{=}\int f(u)\text du=F(u)+C=F[\varphi(x)]+C f[φ(x)]φ(x)dx=f[φ(x)]d[φ(x)]=u=φ(x)f(u)du=F(u)+C=F[φ(x)]+C

第二类换元积分法

∫ f ( x ) d x = x = φ ( t ) ∫ f [ φ ( t ) ] φ ′ ( t ) d t = ∫ g ( t ) d t = G ( t ) + C = G [ φ − 1 ( x ) ] + C \int f(x)\text dx\overset{x=\varphi(t)}{=}\int f[\varphi(t)]\varphi'(t)\text dt=\int g(t)\text dt=G(t)+C=G[\varphi^{-1}(x)]+C f(x)dx=x=φ(t)f[φ(t)]φ(t)dt=g(t)dt=G(t)+C=G[φ1(x)]+C

分部积分

∫ u d v = u v − ∫ v d u \int u\text dv=uv-\int v\text du udv=uvvdu

定积分

n n n项和

lim ⁡ n → ∞ ∑ i = 1 n f ( i n ) ⋅ 1 n = ∫ 0 1 f ( x ) d x \lim\limits_{n\to\infty}\sum\limits_{i=1}^nf(\frac in)\cdot\frac1n=\int_0^1f(x) dx nlimi=1nf(ni)n1=01f(x)dx

积分上限函数

求导:

F ′ ( x ) = d d x [ ∫ ϕ 1 ( x ) ϕ 2 ( x ) f ( t )   d t ] = f [ ϕ 2 ( x ) ] ϕ 2 ′ ( x ) − f [ ϕ 1 ( x ) ] ϕ 1 ′ ( x ) F'(x)=\frac{d}{dx}[\int_{\phi_1(x)}^{\phi_2(x)}f(t)\ dt]=f[\phi_2(x)]\phi_2'(x)-f[\phi_1(x)]\phi_1'(x) F(x)=dxd[ϕ1(x)ϕ2(x)f(t) dt]=f[ϕ2(x)]ϕ2(x)f[ϕ1(x)]ϕ1(x)

牛顿-莱布尼茨公式

∫ a b f ( x ) d x = F ( b ) − F ( a ) \int^b_af(x)\text dx=F(b)-F(a) abf(x)dx=F(b)F(a)

积分中值定理

∫ a b f ( x )   d x = f ( ξ ) ( b − a ) \int_a^b f(x)\ dx = f(\xi)(b-a) abf(x) dx=f(ξ)(ba) ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b]

∫ a b f ( x ) g ( x )   d x = f ( ξ ) ∫ a b g ( x )   d x \int_a^b f(x)g(x)\ dx = f(\xi)\int_a^b g(x)\ dx abf(x)g(x) dx=f(ξ)abg(x) dx   g ( x ) \ g(x)  g(x)不变号

特殊性质

∫ − a a f ( x ) = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^af(x)=\int_0^a[f(x)+f(-x)]\text dx aaf(x)=0a[f(x)+f(x)]dx

∫ a b f ( x )   d x = ∫ a b f ( a + b − x )   d x \int_a^b f(x)\ dx = \int_a^b f(a+b-x)\ dx abf(x) dx=abf(a+bx) dx

n n n为大于等于2的偶数时, ∫ 0 π 2 s i n n x   d x = ∫ 0 π 2 c o s n x   d x = n − 1 n ⋅ n − 3 n − 2 ⋯ 1 2 ⋅ π 2 = ( 2 n − 1 ) ! ! ( 2 n ) ! ! ⋅ π 2 \int_{0}^{\frac{\pi}{2}}{\mathrm{sin}}^nx\ dx=\int_{0}^{\frac{\pi}{2}}{\mathrm{cos}}^nx\ dx=\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdots\frac{1}{2}\cdot\frac{\pi}{2}=\frac{(2n-1)!!}{(2n)!!}\cdot \frac\pi2 02πsinnx dx=02πcosnx dx=nn1n2n3212π=(2n)!!(2n1)!!2π

n n n为大于等于3的奇数时, ∫ 0 π 2 s i n n x   d x = ∫ 0 π 2 c o s n x   d x = n − 1 n ⋅ n − 3 n − 2 ⋯ 2 3 = ( 2 k ) ! ! ( 2 k + 1 ) ! ! \int_{0}^{\frac{\pi}{2}}{\mathrm{sin}}^nx\ dx=\int_{0}^{\frac{\pi}{2}}{\mathrm{cos}}^nx\ dx=\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdots\frac{2}{3}=\frac{(2k)!!}{(2k+1)!!} 02πsinnx dx=02πcosnx dx=nn1n2n332=(2k+1)!!(2k)!!

反常积分

∫ 1 + ∞ 1 x p   d x \int_1^{+\infty}\frac1{x^p}\ dx 1+xp1 dx p > 1 p>1 p>1时收敛, p < = 1 p<=1 p<=1时发散(越大越收敛)

∫ 0 1 1 x p   d x \int_0^1\frac1{x^p}\ dx 01xp1 dx p > = 1 p>=1 p>=1时发散, 0 < p < 1 0<p<1 0<p<1时收敛(越小越收敛),有多个因式时仅看无穷小的因式

p = 1 p=1 p=1时都发散

几何应用

平面图形面积

参数方程: S = ∫ a b y ( t ) d x ( t ) S=\int_a^by(t)\text dx(t) S=aby(t)dx(t)

极坐标系: S = ∫ α β 1 2 r 2 ( θ )   d θ S=\int_\alpha^\beta\frac12r^2(\theta)\ d\theta S=αβ21r2(θ) dθ

平面曲线弧长

直角坐标方程: s = ∫ a b 1 + [ y ′ ( x ) ] 2   d x s=\int_a^b\sqrt{1+[y'(x)]^2}\ dx s=ab1+[y(x)]2  dx

参数方程: s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2   d t s=\int_\alpha^\beta \sqrt{[x'(t)]^2+[y'(t)]^2}\ dt s=αβ[x(t)]2+[y(t)]2  dt

极坐标方程: s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2   d θ s=\int_\alpha^\beta \sqrt{[r(\theta)]^2+[r'(\theta)]^2}\ d\theta s=αβ[r(θ)]2+[r(θ)]2  dθ

旋转体体积

V x = π ∫ a b ∣ y 1 2 ( x ) − y 2 2 ( x ) ∣   d x V_x=\pi\int_a^b|y_1^2(x)-y_2^2(x)|\ dx Vx=πaby12(x)y22(x) dx

记: π y 2 d x \pi y^2\text dx πy2dx

V y = 2 π ∫ a b x ∣ y 1 ( x ) − y 2 ( x ) ∣   d x V_y = 2\pi\int_a^b x|y_1(x)-y_2(x)|\ dx Vy=2πabxy1(x)y2(x) dx

记: 2 π x y d x 2\pi xy\text dx 2πxydx

旋转体侧面积

直角坐标方程绕 x x x轴: S = 2 π ∫ a b ∣ y ( x ) ∣ 1 + [ y ′ ( x ) ] 2   d x S=2\pi\int_a^b|y(x)|\sqrt{1+[y'(x)]^2}\ dx S=2πaby(x)1+[y(x)]2  dx

记: 2 π y d s 2\pi y\text ds 2πyds

参数方程绕 x x x轴: S = 2 π ∫ α β ∣ y ( t ) ∣ [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2   d t S=2\pi\int_\alpha^\beta|y(t)|\sqrt{[x'(t)]^2+[y'(t)]^2}\ dt S=2παβy(t)[x(t)]2+[y(t)]2  dt

记: 2 π y d s 2\pi y\text ds 2πyds

物理应用

多元微分

概念

全增量

Δ z = lim ⁡ Δ x → 0 Δ y → 0 f ( x + Δ x , y + Δ x ) − f ( x , y ) = A Δ x + B Δ y + o ( ρ ) \Delta z=\lim\limits_{\Delta x\to0 \atop \Delta y\to 0}f(x+\Delta x, y+\Delta x)-f(x, y) = A\Delta x+B\Delta y + o(\rho) Δz=Δy0Δx0limf(x+Δx,y+Δx)f(x,y)=AΔx+BΔy+o(ρ),其中, A = f x ′ ( x , y ) , B = f y ′ ( x , y ) , ρ = x 2 + y 2 A=f'_x(x, y), B=f'_y(x, y), \rho=\sqrt{x^2+y^2} A=fx(x,y),B=fy(x,y),ρ=x2+y2

全微分

d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) d y dz = f'_x(x, y)\text dx + f'_y(x, y)\text dy dz=fx(x,y)dx+fy(x,y)dy

偏增量

Δ z x = lim ⁡ Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) = A Δ x + o ( ρ ) \Delta z_x = \lim\limits_{\Delta x\to0}f(x+\Delta x, y) - f(x, y) = A\Delta x + o(\rho) Δzx=Δx0limf(x+Δx,y)f(x,y)=AΔx+o(ρ)

偏导

f x ′ ( x 0 , y 0 ) = lim ⁡ x → x 0 f ( x , y 0 ) − f ( x 0 , y 0 ) x − x 0 f'_x(x_0, y_0)=\lim\limits_{x\to x_0} \frac{f(x, y_0)-f(x_0, y_0)}{x-x_0} fx(x0,y0)=xx0limxx0f(x,y0)f(x0,y0)

可微的判别:

  1. 根据定义: Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y + o(\rho) Δz=AΔx+BΔy+o(ρ),其中 A A A z z z x x x的偏导数, B B B z z z y y y的偏导数
  2. 根据充要条件: lim ⁡ ρ → 0 Δ z − A Δ x − B Δ y ρ = 0 \lim\limits_{\rho\to0}\frac{\Delta z-A\Delta x-B\Delta y}{\rho}=0 ρ0limρΔzAΔxBΔy=0

无条件极值

A = f x x ′ ′ ( x 0 , y 0 ) , B = f x y ′ ′ ( x 0 , y 0 ) , C = f y y ′ ′ ( x 0 , y 0 ) A=f''_{xx}(x_0,y_0), B=f''_{xy}(x_0,y_0), C=f''_{yy}(x_0,y_0) A=fxx′′(x0,y0),B=fxy′′(x0,y0),C=fyy′′(x0,y0)

A C − B 2 > 0 , A < 0 AC-B^2>0, A<0 ACB2>0,A<0,则 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为极大值点

A C − B 2 > 0 , A > 0 AC-B^2>0, A>0 ACB2>0,A>0,则 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为极小值点

A C − B 2 < 0 AC-B^2<0 ACB2<0,则 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)不是极值点

条件极值

拉格朗日乘数法

z = f ( x , y ) z=f(x,y) z=f(x,y)在约束条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0条件下

F = f ( x , y ) + λ φ ( x , y ) F=f(x,y)+\lambda\varphi(x,y) F=f(x,y)+λφ(x,y),由以下三个方程求出 ( x , y ) (x,y) (x,y)的值,并确定最优解

F x ′ = f x ′ + λ φ x ′ = 0 F'_x=f'_x+\lambda\varphi'_x=0 Fx=fx+λφx=0

F y ′ = f y ′ + λ φ y ′ = 0 F'_y=f'_y+\lambda\varphi'_y=0 Fy=fy+λφy=0

F λ ′ = φ ( x , y ) = 0 F'_\lambda=\varphi(x,y)=0 Fλ=φ(x,y)=0

极大极小由实际问题决定

二重积分

单位正方形区域上的二重积分

lim ⁡ m → ∞ n → ∞ 1 m n ∑ i = 1 m ∑ i = 1 n f ( i m , j n ) = ∬ D f ( x , y ) d x d y , D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 } \lim\limits_{m\to\infty \atop n\to\infty} \frac1{mn}\sum\limits_{i=1}^m \sum\limits_{i=1}^n f(\frac im, \frac jn)=\iint\limits_D f(x,y)\text dx\text dy, D=\{(x,y) | 0\leq x\leq1, 0\leq y\leq1\} nmlimmn1i=1mi=1nf(mi,nj)=Df(x,y)dxdy,D={(x,y)∣0x1,0y1}

二重积分中值定理(新增考点)

∬ D f ( x , y ) d x d y = f ( ξ , η ) A \iint\limits_Df(x,y)\text dx\text dy=f(\xi, \eta)A Df(x,y)dxdy=f(ξ,η)A A A A为区域的面积

特殊性质

  1. 关于 y = x y=x y=x对称的区域,被积函数 x x x y y y可以互换
  2. 关于 x x x轴对称的区域,被积函数是 y y y的积函数的项积分为 0 0 0,可以直接去掉;关于 y y y轴对称同理

极坐标系下的二重积分

x = r cos ⁡ θ , y = r sin ⁡ θ x=r\cos\theta, y=r\sin\theta x=rcosθ,y=rsinθ

∬ D f ( x , y ) d σ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r \iint\limits_D f(x,y)\text d\sigma=\int_\alpha^\beta\text d\theta\int_{r_1(\theta)}^{r_2(\theta)}f(r\cos\theta,r\sin\theta)r\text dr Df(x,y)dσ=αβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdr

极坐标系下 d σ = r d r d θ \text d\sigma=r\text dr\text d\theta dσ=rdrdθ

几何应用

柱体体积

V = ∬ D x y ∣ z ( x , y ) ∣   d σ V=\iint\limits_{Dxy}|z(x, y)|\ d\sigma V=Dxyz(x,y) dσ

总质量

m = ∬ D ρ ( x , y ) σ m=\iint\limits_D \rho(x, y)\sigma m=Dρ(x,y)σ

微分方程

一阶

(可分离变量)能写成 y ′ = f ( x ) ⋅ g ( y ) y'=f(x)\cdot g(y) y=f(x)g(y),直接分离变量

(齐次微分方程)能写成 y ′ = f ( y x ) y'=f(\frac yx) y=f(xy) y ′ = f ( x y ) y'=f(\frac xy) y=f(yx),令 u = y x u=\frac yx u=xy d y d x = u + x d u d x \frac{\text dy}{\text dx} = u + x \frac{\text du}{\text dx} dxdy=u+xdxdu,或令 u = x y u=\frac xy u=yx x x x当作 y y y的函数, d x d y = u + y d u d y \frac{\text dx}{\text dy} = u + y \frac{\text du}{\text dy} dydx=u+ydydu

(一阶齐次线性)能写成 y ′ + p ( x ) y = 0 y'+p(x)y=0 y+p(x)y=0,用公式法: y = C e − ∫ p ( x ) d x y=Ce^{-\int p(x)\text dx} y=Cep(x)dx

(一阶非齐次线性)能写成 y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x) y+p(x)y=q(x),用公式法: y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x q ( x ) d x + C ] y=e^{-\int p(x)\text dx}[\int e^{\int p(x)\text dx}q(x)\text dx + C] y=ep(x)dx[ep(x)dxq(x)dx+C]

能写成 y ′ = f ( a x + b y + c ) y'=f(ax+by+c) y=f(ax+by+c),令 u = a x + b y + c u=ax+by+c u=ax+by+c

二阶可降阶

不显含 y y y,令 y ′ = p y'=p y=p y ′ ′ = d p d x y''=\frac{dp}{dx} y′′=dxdp;或者先当作一阶把 y ′ y' y解出来

不显含 x x x,令 y ′ = p y'=p y=p y ′ ′ = d p d y p y''=\frac{dp}{dy}p y′′=dydpp

二阶常系数线性

(1) 二阶常系数齐次线性: y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py+qy=0

(2) 二阶常系数非齐次线性: y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x)

齐次的通解

特征方程: λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0

p 2 − 4 q > 0 p^2-4q>0 p24q>0 y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x

p 2 − 4 q = 0 p^2-4q=0 p24q=0 y = ( C 1 + C 2 x ) e λ x y=(C_1+C_2x)e^{\lambda x} y=(C1+C2x)eλx

p 2 − 4 q < 0 p^2-4q<0 p24q<0 y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}(C_1\cos\beta x+C_2\sin \beta x) y=eαx(C1cosβx+C2sinβx) α , β \alpha, \beta α,β是实部和虚部

非齐次的特解

当自由项 f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn(x)eαx时,特解设为 y ∗ = x k Q n ( x ) e α x y^*=x^kQ_n(x)e^{\alpha x} y=xkQn(x)eαx k k k为与 α \alpha α相同的 λ \lambda λ的个数(无实根就是0), Q Q Q是与 P P P最高次数相同的待定系数多项式

当自由项 f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}[P_m(x)\cos\beta x+P_n(x)\sin \beta x] f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]时,特解设为 y ∗ = e α x [ Q l ( 1 ) ( x ) cos ⁡ β x + Q l ( 2 ) ( x ) sin ⁡ β x ] x k y^*=e^{\alpha x}[Q_l^{(1)}(x)\cos\beta x+Q_l^{(2)}(x)\sin\beta x]x^k y=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk l = max ⁡ { m , n } l=\max\{m, n\} l=max{m,n} k k k取决于 α ± β i \alpha\pm\beta i α±βi是否为特征根,是则为1

非齐次的通解

非齐次的通解=齐次的通解+非齐次的特解

高阶

通解

单实根: y = C e λ x y=Ce^{\lambda x} y=Ceλx

重实根: y = ( C 1 + C 2 x + C 3 x 2 + ⋯ + C k x k − 1 ) e λ x y=(C_1+C_2x+C_3x^2+\cdots+C_kx^{k-1})e^{\lambda x} y=(C1+C2x+C3x2++Ckxk1)eλx(有高阶必有低阶)

单复根 α ± β i \alpha\pm\beta i α±βi y = e a x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{ax}(C_1\cos\beta x+C_2\sin\beta x) y=eax(C1cosβx+C2sinβx)(成对出现)

行列式、矩阵、向量、线性方程组

拉普拉斯公式

∣ A O O B ∣ = ∣ A ∣ ∣ B ∣ \left|\begin{array}{cccc}A&O\\O&B\end{array}\right|=|A||B| AOOB =A∣∣B

∣ O A B O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left|\begin{array}{cccc}O&A\\B&O\end{array}\right|=(-1)^{mn}|A||B| OBAO =(1)mnA∣∣B

范德蒙行列式

∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n ⋯ ⋯ ⋯ ⋯ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i < j ≤ n ( x j − x i ) \left|\begin{array}{cccc}1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\\cdots&\cdots&\cdots&\cdots\\x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\end{array}\right|=\prod\limits_{1\leq i<j\leq n}(x_j-x_i) 1x1x1n11x2x2n11xnxnn1 =1i<jn(xjxi)

(所有下标大减下标小的乘积)

矩阵基本公式

记住几个基本的,其他可以推导

$AA*=A*A=|A|E $ , A ∗ = A − 1 ∣ A ∣ , A − 1 = A ∗ ∣ A ∣ , A^*=A^{-1}|A|, A^{-1}=\frac{A^*}{|A|} ,A=A1A,A1=AA

( k A ) ∗ = k n − 1 A ∗ , ( k A ) T = k A T , ( k A ) − 1 = 1 k A − 1 , ∣ k A ∣ = k n ∣ A ∣ (kA)^*=k^{n-1}A^*, (kA)^T=kA^T, (kA)^{-1}=\frac1kA^{-1}, |kA|=k^n|A| (kA)=kn1A,(kA)T=kAT,(kA)1=k1A1,kA=knA

( A B ) ∗ = B ∗ A ∗ , ( A B ) T = B T A T , ( A B ) − 1 = B − 1 A − 1 (AB)^*=B^*A^*, (AB)^T=B^TA^T, (AB)^{-1}=B^{-1}A^{-1} (AB)=BA,(AB)T=BTAT,(AB)1=B1A1

( A ∗ ) − 1 = ( A − 1 ) ∗ , ( A ∗ ) T = ( A T ) ∗ , ( A T ) − 1 = ( A − 1 ) T (A^*)^{-1}=(A^{-1})^*, (A^*)^T=(A^T)^*, (A^T)^{-1}=(A^{-1})^T (A)1=(A1),(A)T=(AT),(AT)1=(A1)T

∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac1{|A|} A1=A1

∣ A ∗ ∣ = ∣ A ∣ n − 1 , ∣ ( A ∗ ) ∗ ∣ = ∣ A ∣ ( n − 1 ) 2 |A^*|=|A|^{n-1}, |(A^*)^*|=|A|^{(n-1)^2} A=An1,(A)=A(n1)2

( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A

伴随

伴随矩阵是代数余子矩阵的转置矩阵

[ A B C D ] \left[\begin{array}{cccc}A&B\\C&D\\\end{array}\right] [ACBD]的伴随矩阵是 [ D − B − C A ] \left[\begin{array}{cccc}D&-B\\-C&A\\\end{array}\right] [DCBA]

可逆的充要条件:

  1. 行列式不为0
  2. 可表示为有限个初等矩阵相乘
  3. 秩为 n n n
  4. 特征值都不为0

方阵

[ A B C D ] [ X Y Z W ] = [ A X + B Z A Y + B W C X + D Z C Y + D W ] \left[\begin{array}{cccc}A&B\\C&D\\\end{array}\right]\left[\begin{array}{cccc}X&Y\\Z&W\\\end{array}\right] = \left[\begin{array}{cccc}AX+BZ&AY+BW\\CX+DZ&CY+DW\\\end{array}\right] [ACBD][XZYW]=[AX+BZCX+DZAY+BWCY+DW]

[ O A B O ] k = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left[\begin{array}{cccc}O&A\\B&O\\\end{array}\right]^k=(-1)^{mn}|A||B| [OBAO]k=(1)mnA∣∣B

[ A O O B ] k = [ A k O O B k ] \left[\begin{array}{cccc}A&O\\O&B\\\end{array}\right]^k=\left[\begin{array}{cccc}A^k&O\\O&B^k\\\end{array}\right] [AOOB]k=[AkOOBk]

[ B O D C ] − 1 = [ B − 1 O − C − 1 D B − 1 C − 1 ] \left[\begin{array}{cccc}B&O\\D&C\\\end{array}\right]^{-1}=\left[\begin{array}{cccc}B^{-1}&O\\-C^{-1}DB^{-1}&C^{-1}\\\end{array}\right] [BDOC]1=[B1C1DB1OC1]

[ B D O C ] − 1 = [ B − 1 − B − 1 D C − 1 O C − 1 ] \left[\begin{array}{cccc}B&D\\O&C\\\end{array}\right]^{-1}=\left[\begin{array}{cccc}B^{-1}&-B^{-1}DC^{-1}\\O&C^{-1}\\\end{array}\right] [BODC]1=[B1OB1DC1C1]

[ O B C D ] − 1 = [ − C − 1 D B − 1 C − 1 B − 1 O ] \left[\begin{array}{cccc}O&B\\C&D\\\end{array}\right]^{-1}=\left[\begin{array}{cccc}-C^{-1}DB^{-1}&C^{-1}\\B^{-1}&O\\\end{array}\right] [OCBD]1=[C1DB1B1C1O]

[ D B C O ] − 1 = [ O C − 1 B − 1 − B − 1 D C − 1 ] \left[\begin{array}{cccc}D&B\\C&O\\\end{array}\right]^{-1}=\left[\begin{array}{cccc}O&C^{-1}\\B^{-1}&-B^{-1}DC^{-1}\\\end{array}\right] [DCBO]1=[OB1C1B1DC1]

向量

性质:

( α , β ) = ( β , α ) = α T β = β T α (\alpha,\beta)=(\beta,\alpha)=\alpha^T\beta=\beta^T\alpha (α,β)=(β,α)=αTβ=βTα

( α , α ) = ∣ α ∣ 2 (\alpha,\alpha)=|\alpha|^2 (α,α)=α2

内积是对应的分量相乘再相加,内积等于0说明正交

方程个数少于未知数个数,也是线性相关

非零正交的向量两两之间线性无关

向量组等价:两组中的每个向量都能被另一组向量表示

性质:

r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) r(A)=r(A^T)=r(AA^T)=r(A^TA) r(A)=r(AT)=r(AAT)=r(ATA)

r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B)\leq r(A)+r(B) r(A+B)r(A)+r(B)

r ( α α T ) = 1 r(\alpha\alpha^T)=1 r(ααT)=1

r ( A B ) ≤ min ⁡ { r ( A ) , r ( B ) } r(AB)\leq\min\{r(A), r(B)\} r(AB)min{r(A),r(B)}

max { r ( A ) , r ( B ) } ≤ r ( A , B ) ≤ r ( A ) + r ( B ) \text{max}\{r(A),r(B)\}\leq r(A,B)\leq r(A)+r(B) max{r(A),r(B)}r(A,B)r(A)+r(B)

A A A可逆,则 r ( A B ) = r ( B ) , r ( B A ) = r ( B ) r(AB)=r(B), r(BA)=r(B) r(AB)=r(B),r(BA)=r(B)

【重要】 A m × n B n × s = O A_{m\times n}B_{n\times s}=O Am×nBn×s=O,则 r ( A ) + r ( B ) ≤ n r(A)+r(B)\leq n r(A)+r(B)n B B B看作未知数,解空间维度 ≤ n − r ( A ) \leq n-r(A) nr(A)

r ( A ) = n r(A)=n r(A)=n时, r ( A ∗ ) = n r(A^*)=n r(A)=n

r ( A ) = n − 1 r(A)=n-1 r(A)=n1时, r ( A ∗ ) = 1 r(A^*)=1 r(A)=1

r ( A ) < n − 1 r(A)<n-1 r(A)<n1时, r ( A ∗ ) = 0 r(A^*)=0 r(A)=0

相似理论、二次型

特征值与特征向量

特征值与特征向量的定义: A α = λ α A\alpha=\lambda\alpha Aα=λα

求特征值: ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0

特征值不一定是实数

n n n阶行列式有 n n n个特征值(特征值可能是多重的)

一个矩阵的多个特征值对应的特征向量线性无关(仅取基础解系)(多重特征值不一定有多个特征向量)

矩阵 A A A k A kA kA A k A^k Ak f ( A ) f(A) f(A) A − 1 A^{-1} A1 A ∗ A^* A P − 1 P^{-1} P1
特征值 λ \lambda λ k λ k\lambda λ k \lambda^k λk f ( λ ) f(\lambda) f(λ) 1 λ \frac1\lambda λ1$\frac{A
对应的特征向量 ξ \xi ξ ξ \xi ξ ξ \xi ξ ξ \xi ξ ξ \xi ξ ξ \xi ξ P − 1 ξ P^{-1}\xi P1ξ

特征值的性质:

  1. 特征值之积等于行列式
  2. 特征值之和等于迹
  3. 可逆矩阵每个特征值都不等于0(特征值之积等于行列式,可逆矩阵行列式不等于0)

相似

相似的定义: P − 1 A P = B P^{-1}AP=B P1AP=B,则 A , B A,B A,B相似,记作 A ∼ B A\sim B AB

相似的性质:

A ∼ B ⇒ A\sim B\Rightarrow AB

  1. λ A = λ B \lambda_A=\lambda_B λA=λB ∣ λ E − A ∣ = ∣ λ E − B ∣ |\lambda E-A|=|\lambda E-B| λEA=λEB
  2. ∣ A ∣ = ∣ B ∣ |A|=|B| A=B (特征值相同,特征值之积等于行列式)
  3. tr ( A ) = tr ( B ) \text{tr}(A)=\text{tr}(B) tr(A)=tr(B) (特征值相同,特征值之和等于迹)
  4. r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B) (乘以可逆矩阵,秩不变)

实对称矩阵

定义: A = A T A=A^T A=AT

实对称矩阵的性质:

  1. 实对称矩阵特征向量是实数
  2. 实对称矩不同特征值对应的特征向量正交
  3. 一定可以相似对角化(一定有n个线性无关的特征向量)
  4. 实对称矩阵之间进行运算,得到的结果还是实对称矩阵

实对称矩阵相似的充要条件:特征值相同

相似对角化

相似对角化就是找相似的对角矩阵

可相似对角化的充要条件是存在n个线性无关的特征向量

正交向量

定义: ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0,则 α , β \alpha,\beta α,β正交

施密特正交化

β 1 = α 1 \beta_1=\alpha_1 β1=α1

β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β2=α2(β1,β1)(α2,β1)β1

β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1 - \frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2

β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ⋯ − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 \beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1 - \cdots - \frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1} βn=αn(β1,β1)(αn,β1)β1(βn1,βn1)(αn,βn1)βn1

单位化(规范化)

γ 1 = 1 ∣ β 1 ∣ β 1 , ⋯   , γ n = 1 ∣ β n ∣ β n \gamma_1=\frac1{|\beta_1|}\beta_1, \cdots, \gamma_n=\frac1{|\beta_n|}\beta_n γ1=β11β1,,γn=βn1βn

施密特正交后得到的向量仍然是原来的特征值对应的特征向量

(施密特变换后仍然在特征子空间之内)

同一个特征值对应的特征向量正交化后得到的向量仍然是特征向量,但不用特征值对应的特征向量正交化后得到的向量不再是特征向量

https://www.zhihu.com/question/406817438/answer/1343293191

实对称矩阵相似对角单位化后,还可以使 P P P正交单位化

正交矩阵

定义: A T A = E A^TA=E ATA=E,则 A A A是正交矩阵

(矩阵中的向量两两正交且规范)

性质:

  1. A − 1 = A T A^{-1}=A^T A1=AT A T A = E , A − 1 A = E A^TA=E, A^{-1}A=E ATA=E,A1A=E
  2. 行列式等于 ± 1 \pm1 ±1 ∣ A T ∣ ∣ A ∣ = 1 , ∣ A ∣ 2 = 1 |A^T||A|=1, |A|^2=1 AT∣∣A=1,A2=1
  3. 特征值等于 ± 1 \pm1 ±1

二次型

标准二次型:对角阵

配方法

正交变换法

与实对称矩阵相似对角化类似, Q − 1 A Q = B , Q − 1 = Q T , Q T A Q = B Q^{-1}AQ=B,Q^{-1}=Q^T,Q^TAQ=B Q1AQ=B,Q1=QT,QTAQ=B

正定

定义: ∀ x ≠ 0 , X T A X > 0 \forall x\not=0, X^TAX>0 x=0,XTAX>0

性质:

  1. X T A X ≥ 0 X^TAX\geq0 XTAX0
  2. X T A X = 0 X^TAX=0 XTAX=0当且仅当 X = 0 X=0 X=0

充要条件:

  1. 所有特征值大于0
  2. 顺序主子式大于0

合同

合同的定义: P T A P = B P^TAP=B PTAP=B,则 A , B A,B A,B合同,记作 A ≃ B A\simeq B AB

合同矩阵的性质:惯性指数相同

实对称矩阵合同的充要条件: A , B A, B A,B正负特征值的个数相同

  • 1
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值