考研必备数学公式大全(数学二)(线性代数篇)

由于公式太多,汇总成一篇容易打不开,所以分三篇。整篇链接:https://blog.csdn.net/zhaohongfei_358/article/details/106039576

章节链接
基础回顾篇https://blog.csdn.net/zhaohongfei_358/article/details/119929920
高等数学篇https://blog.csdn.net/zhaohongfei_358/article/details/119929988
线性代数篇https://blog.csdn.net/zhaohongfei_358/article/details/119930063

线性代数

行列式

∣ A ∣ = ∣ A T ∣ ∣ k A ∣ = k n ∣ A ∣ ∣ A B ∣ = ∣ A ∣ ∣ B ∣ A i j = ( − 1 ) i + j M i j \begin{aligned} & |A| = |A^T| \\ \\ & |kA| = k^n|A| \\ \\ & |AB| = |A||B| \\ \\ & A_{ij} = (-1)^{i+j}M_{ij} \\ \\ \end{aligned} A=ATkA=knAAB=ABAij=(1)i+jMij

几个重要的行列式

∣ a 11 0 … 0 0 a 22 … 0 ⋮ ⋮ ⋮ 0 0 … a n n ∣ = ∣ a 11 0 … 0 a 21 a 22 … 0 ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = ∣ a 11 a 12 … a 1 n 0 a 22 … a 2 n ⋮ ⋮ ⋮ 0 0 … a n n ∣ = ∏ i = 1 n a i i ∣ 0 … 0 a 1 n 0 … a 2 , n − 1 0 ⋮ ⋮ ⋮ a n 1 … 0 0 ∣ = ∣ 0 … 0 a 1 n 0 … a 2 , n − 1 ⋮ a n 1 ∣ = ∣ a 1 n a 2 , n − 1 0 ⋮ ⋮ a n 1 … 0 0 ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 … a n 1 ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i < j ≤ n ( x j − x i ) ∣ a b b ⋯ b b a b ⋯ b b b a ⋯ b ⋮ ⋮ ⋮ ⋮ b b b ⋯ a ∣ = [ a + ( n − 1 ) b ] ( a − b ) n − 1 ∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ ∣ O A n × n B m × m O ∣ = ∣ O A B C ∣ = ∣ C A B O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \begin{aligned} & \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = \prod_{i=1}^na_{ii} \\ \\ \\ & \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & \\ \vdots & & & \\ a_{n1} & & & \end{vmatrix} = \begin{vmatrix} & & & a_{1n} \\ & & a_{2,n-1} & 0 \\ & & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}\dots a_{n1} \\ \\ \\ & \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ \end{vmatrix} = \prod_{1\le i <j \le n}(x_j-x_i) \\ \\ \\ & \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \\ \end{vmatrix} = [a+(n-1)b](a-b)^{n-1} \\ \\ \\ & \begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B| \\ \\ \\ & \begin{vmatrix} O & A_{n\times n} \\ B_{m\times m} & O \end{vmatrix} = \begin{vmatrix} O & A \\ B & C \end{vmatrix} = \begin{vmatrix} C & A \\ B & O \end{vmatrix} = (-1)^{mn}|A||B| \end{aligned} a11000a22000ann=a11a21an10a22an200ann=a1100a12a220a1na2nann=i=1naii00an10a2,n10a1n00=00an10a2,n1a1n=an1a2,n10a1n00=(1)2n(n1)a1na2,n1an11x1x12x1n11x2x22x2n11xnxn2xnn1=1i<jn(xjxi)abbbbabbbbabbbba=[a+(n1)b](ab)n1AOOB=AOCB=ACOB=ABOBm×mAn×nO=OBAC=CBAO=(1)mnAB

矩阵

( A T ) T = A ( k A ) T = k A T ( A + B ) T = A T + B T ( A B ) T = B T A T A A ∗ = A ∗ A = ∣ A ∣ E ∣ A ∗ ∣ = ∣ A ∣ n − 1 A − 1 = 1 ∣ A ∣ A ∗ A = ∣ A ∣ ( A ∗ ) − 1 ( A − 1 ) − 1 = A ( k A ) − 1 = k − 1 A − 1 ( A B ) − 1 = B − 1 A − 1 ( A T ) − 1 = ( A − 1 ) T ( A T ) ∗ = ( A ∗ ) T ( A − 1 ) ∗ = ( A ∗ ) − 1 ( A B ) ∗ = B ∗ A ∗ ( A ∗ ) ∗ = ∣ A ∣ n − 2 A ∣ A − 1 ∣ = ∣ A ∣ − 1 [ A ∣ E ] → 初 等 行 变 换 [ E ∣ A − 1 ] [ A ∣ B ] → 初 等 行 变 换 [ E ∣ A − 1 B ] \begin{aligned} & (A^T)^T = A \\ \\ & (kA)^T = kA^T \\ \\ & (A+B)^T = A^T + B^T \\ \\ & (AB)^T = B^TA^T \\ \\ & AA^* = A^*A = |A|E \\ \\ & |A^*|=|A|^{n-1} \\ \\ & A^{-1} = \frac{1}{|A|}A^* \\ \\ & A = |A|(A^*)^{-1} \\ \\ & (A^{-1})^{-1} = A \\ \\ & (kA)^{-1} = k^{-1}A^{-1} \\ \\ & (AB)^{-1} =B^{-1}A^{-1} \\ \\ & (A^T)^{-1} = (A^{-1})^T \\ \\ & (A^T)^* = (A^*)^T \\ \\ & (A^{-1})^* = (A^*)^{-1} \\ \\ & (AB)^* = B^*A^* \\ \\ & (A^*)^* = |A|^{n-2}A \\ \\ & |A^{-1}| = |A|^{-1} \\ \\ & [A|E] \xrightarrow{初等行变换}[E|A^{-1}] \\\\ & [A|B] \xrightarrow{初等行变换}[E|A^{-1}B] \\\\ \end{aligned} (AT)T=A(kA)T=kAT(A+B)T=AT+BT(AB)T=BTATAA=AA=AEA=An1A1=A1AA=A(A)1(A1)1=A(kA)1=k1A1(AB)1=B1A1(AT)1=(A1)T(AT)=(A)T(A1)=(A)1(AB)=BA(A)=An2AA1=A1[AE] [EA1][AB] [EA1B]

分块矩阵

[ A O O B ] n = [ A n O O B n ] \begin{aligned} \begin{bmatrix} A & O \\ O & B \end{bmatrix}^n = \begin{bmatrix} A^n & O \\ O & B^n \end{bmatrix} \end{aligned} [AOOB]n=[AnOOBn]

正交矩阵

A 是 正 交 矩 阵    ⟺    A T = A − 1    ⟺    A T A = A A T = E    ⟺    A 的 行 ( 列 ) 向 量 组 是 标 准 正 交 向 量 组    ⟹    ∣ A ∣ = ± 1    ⟹    λ = ± 1 \begin{aligned} & A是正交矩阵 \\\\ \iff & A^T =A^{-1} \\ \\ \iff & A^T A = AA^T = E \\ \\ \iff & A的行(列)向量组是标准正交向量组 \\ \\ \implies & |A| = \pm 1 \\ \\ \implies & \lambda = \pm 1 \\ \\ \end{aligned} AAT=A1ATA=AAT=EAA=±1λ=±1

施密特正交化

β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β 3 = α 3 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 ⋯ ⋯ β n = α n − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 − ( α n , β n − 2 ) ( β n − 2 , β n − 2 ) β n − 2 − ⋯ − ( α n , β 1 ) ( β 1 , β 1 ) β 1 η 1 = β 1 ∣ ∣ β 1 ∣ ∣ , η 2 = β 2 ∣ ∣ β 2 ∣ ∣ , ⋯   , η n = β n ∣ ∣ β n ∣ ∣ 其 中 : ( α , β ) = α T β = β T α = ∑ i = 1 n a i b i ( α , α ) = a 1 2 + a 2 2 + ⋯ + a n 2 = ∑ i = 1 n a i 2 ∣ ∣ β ∣ ∣ = ( β , β ) = b 1 2 + b 2 2 + ⋯ + b n 2 \begin{aligned} & \beta_1 = \alpha_1 \\ \\ & \beta_2 = \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1, \beta_1)}\beta_1 \\ \\ & \beta_3 = \alpha_3 - \frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 - \frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1 \\ \\ & \cdots\cdots \\\\ & \beta_n = \alpha_n - \frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1} - \frac{(\alpha_n,\beta_{n-2})}{(\beta_{n-2},\beta_{n-2})}\beta_{n-2} - \cdots - \frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1 \\ \\ \\ & \eta_1 = \frac{\beta_1}{||\beta_1||}, \eta_2 = \frac{\beta_2}{||\beta_2||}, \cdots , \eta_n = \frac{\beta_n}{||\beta_n||} \\\\\\ 其中:& (\alpha, \beta) = \alpha^T\beta = \beta^T\alpha=\sum_{i=1}^na_ib_i \\ \\ & (\alpha,\alpha) = a_1^2 + a_2^2 + \cdots +a_n^2 = \sum_{i=1}^n a_i^2 \\ \\ & || \beta || = \sqrt{(\beta,\beta)} = \sqrt{b_1^2+b_2^2 + \cdots + b_n^2 } \end{aligned} β1=α1β2=α2(β1,β1)(α2,β1)β1β3=α3(β2,β2)(α3,β2)β2(β1,β1)(α3,β1)β1βn=αn(βn1,βn1)(αn,βn1)βn1(βn2,βn2)(αn,βn2)βn2(β1,β1)(αn,β1)β1η1=β1β1,η2=β2β2,,ηn=βnβn(α,β)=αTβ=βTα=i=1naibi(α,α)=a12+a22++an2=i=1nai2β=(β,β) =b12+b22++bn2

可逆矩阵

A 可 逆    ⟺    ∣ A ∣ ≠ 0    ⟺    A 的 行 ( 列 ) 向 量 组 线 性 无 关    ⟺    A x = 0 有 唯 一 零 解    ⟺    A x = b 有 唯 一 解    ⟺    r ( A ) = n    ⟺    特 征 值 λ i ≠ 0 \begin{aligned} & A可逆 \\\\ \iff & |A| \ne 0 \\ \\ \iff & A的行(列)向量组线性无关 \\\\ \iff & Ax=0 有唯一零解 \\\\ \iff & Ax=b 有唯一解 \\\\ \iff & r(A)=n \\\\ \iff & 特征值 \lambda_i \ne 0 \end{aligned} AA=0A线Ax=0Ax=br(A)=nλi=0

等价矩阵

A , B 等 价    ⟺    A ≅ B    ⟺    P A Q = B ,       P , Q 可 逆    ⟺    r ( A ) = r ( B ) { α 1 , α 2 , ⋯   , α s } ≅ { β 1 , β 2 , ⋯   , β t }    ⟺    { α 1 , α 2 , ⋯   , α s } 与 { β 1 , β 2 , ⋯   , β t } 可 以 互 相 表 出    ⟺    r ( α 1 , α 2 , ⋯   , α s ) = r ( β 1 , β 2 , ⋯   , β t ) , 且 可 单 方 向 表 出    ⟺    r ( α 1 , α 2 , ⋯   , α s ) = r ( β 1 , β 2 , ⋯   , β t ) = r ( α 1 , α 2 , ⋯   , α s , β 1 , β 2 , ⋯   , β t ) \begin{aligned} & A, B等价 \\\\ \iff & A \cong B \\ \\ \iff & PAQ = B , ~~~~~P,Q可逆 \\ \\ \iff & r(A) = r(B) \\\\\\ & \{\alpha_1,\alpha_2, \cdots, \alpha_s\} \cong \{\beta_1,\beta_2, \cdots, \beta_t \} \\ \\ \iff & \{\alpha_1,\alpha_2, \cdots, \alpha_s\} 与 \{\beta_1,\beta_2, \cdots, \beta_t \} 可以互相表出 \\ \\ \iff & r(\alpha_1,\alpha_2, \cdots, \alpha_s) = r(\beta_1,\beta_2, \cdots, \beta_t ),且可单方向表出 \\ \\ \iff & r(\alpha_1,\alpha_2, \cdots, \alpha_s) = r(\beta_1,\beta_2, \cdots, \beta_t ) = r(\alpha_1,\alpha_2, \cdots, \alpha_s, \beta_1,\beta_2, \cdots, \beta_t) \\ \\ \end{aligned} A,BABPAQ=B,     P,Qr(A)=r(B){α1,α2,,αs}{β1,β2,,βt}{α1,α2,,αs}{β1,β2,,βt}r(α1,α2,,αs)=r(β1,β2,,βt)r(α1,α2,,αs)=r(β1,β2,,βt)=r(α1,α2,,αs,β1,β2,,βt)

秩相关公式

A 是 m × n 矩 阵 , 则 : r ( A ) ≤ m i n { m , n } r ( A ) = r ( A T ) r ( k A ) = r ( A )    ( k ≠ 0 ) r ( A + B ) ≤ r ( A ) + r ( B ) r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r ( A ) + r ( B ) − n ≤ r ( A B ) r ( A ) + r ( B ) ≤ n      ( 其 中 , A B = O , n 是 A 的 列 数 或 B 的 行 数 ) r ( A O O B ) = r ( A ) + r ( B ) r ( A ) + r ( B ) ≤ r ( A O C B ) ≤ r ( A ) + r ( B ) + r ( C ) r ( A ) = r ( A T A ) r ( A ) = 1    ⟹    ∃ 非 零 α , β , 使 得 A = α β T r ( α α T ) = 1 { r ( A ) = n               ⟹        r ( A ∗ ) = n r ( A ) = n − 1        ⟹        r ( A ∗ ) = 1 r ( A ) < n − 1        ⟹        r ( A ∗ ) = 0 \begin{aligned} & A是m\times n矩阵,则:\\\\ & r(A) \le min\{m,n\} \\ \\ & r(A) = r(A^T) \\ \\ & r(kA) = r(A) ~~(k\ne0)\\ \\ & r(A+B) \le r(A) + r(B) \\ \\ & r(AB) \le min\{r(A), r(B)\} \\ \\ & r(A) + r(B) -n \le r(AB) \\ \\ & r(A) + r(B) \le n ~~~~(其中,AB=O,n是A的列数或B的行数) \\\\ & r\begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B) \\ \\ & r(A) + r(B) \le r\begin{pmatrix} A & O \\ C & B \end{pmatrix} \le r(A) + r(B) + r(C) \\\\ & r(A) = r(A^T A) \\ \\ & r(A) = 1 \implies \exists 非零 \alpha, \beta ,使得 A = \alpha\beta^T \\ \\ & r(\alpha \alpha^T) = 1 \\ \\ & \begin{cases} r(A) = n ~~~~~~~~~~ \implies ~~~ r(A^*) = n \\ r(A) = n - 1 ~~~ \implies ~~~ r(A^*) = 1 \\ r(A) < n - 1 ~~~ \implies ~~~ r(A^*) = 0 \\ \end{cases} \\\\ \end{aligned} Am×nr(A)min{m,n}r(A)=r(AT)r(kA)=r(A)  (k=0)r(A+B)r(A)+r(B)r(AB)min{r(A),r(B)}r(A)+r(B)nr(AB)r(A)+r(B)n    AB=O,nABr(AOOB)=r(A)+r(B)r(A)+r(B)r(ACOB)r(A)+r(B)+r(C)r(A)=r(ATA)r(A)=1α,β使A=αβTr(ααT)=1r(A)=n             r(A)=nr(A)=n1      r(A)=1r(A)<n1      r(A)=0

特征值与特征向量

∑ i = 1 n λ i = ∑ i = 1 n a i i ∏ i = 1 n λ i = ∣ A ∣ \begin{aligned} & \sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii} \\ \\ & \prod_{i=1}^n \lambda_i = |A| \\\\ \end{aligned} i=1nλi=i=1naiii=1nλi=A

矩 阵 A k A A k f ( A ) A − 1 A ∗ A − 1 + f ( A ) 特 征 值 λ k λ λ k f ( λ ) λ − 1 ∣ A ∣ λ 1 λ + f ( λ ) 对 应 的 特 征 向 量 ξ ξ ξ ξ ξ ξ ξ \def\arraystretch{2} \begin{array}{c:c:c:c:c:c:c:c} 矩阵 & A & kA & A^k & f(A) & A^{-1} & A^* & A^{-1} + f(A) \\ \hline 特征值 & \lambda & k\lambda & \lambda^k & f(\lambda) & \lambda^{-1} & \frac{|A|}{\lambda} & \frac{1}{\lambda} + f(\lambda) \\ \hline 对应的特征向量 & \xi & \xi&\xi&\xi&\xi&\xi&\xi \end{array} AλξkAkλξAkλkξf(A)f(λ)ξA1λ1ξAλAξA1+f(A)λ1+f(λ)ξ

相似矩阵

A ∼ B    ⟺    P − 1 A P = B    ⟺    λ E − A ∼ λ E − B    ⟺    μ E − A ≅ μ E − B ( 其 中 μ 为 任 意 实 数 , 即 r ( μ E − A ) = r ( μ E − B ) )    ⟹    r ( A ) = r ( B )    ⟹    ∣ A ∣ = ∣ B ∣    ⟹    ∣ λ E − A ∣ = ∣ λ E − B ∣    ⟹    r ( λ E − A ) = r ( λ E − B )    ⟹    A , B 特 征 值 相 同 , 且 相 同 特 征 值 对 应 的 线 性 无 关 的 特 征 向 量 个 数 相 同    ⟹    ∑ a i i = ∑ b i i    ⟹    A 与 B 均 可 对 角 化 , 或 均 不 可 对 角 化    ⟹    A ⋍ B     ( A , B 合 同 )    ⟹    A m ∼ B m    ⟹    A T ∼ B T    ⟹    f ( A ) ∼ f ( B )    ⟹    A − 1 ∼ B − 1    ⟹    f ( A − 1 ) ∼ f ( B − 1 ) \begin{aligned} & A \sim B \\ \\ \iff & P^{-1}AP = B \\\\ \iff & \lambda E-A \sim \lambda E-B \\\\ \iff & \mu E-A \cong \mu E-B (其中\mu 为任意实数,即 r(\mu E-A) = r(\mu E-B)) \\\\\\ \implies & r(A) = r(B) \\ \\ \implies & |A| = |B| \\ \\ \implies & |\lambda E-A| = |\lambda E-B| \\ \\ \implies & r(\lambda E-A) = r(\lambda E-B) \\ \\ \implies & A,B特征值相同,且相同特征值对应的线性无关的特征向量个数相同 \\ \\ \implies & \sum a_{ii} = \sum b_{ii} \\ \\ \implies & A与B均可对角化,或均不可对角化 \\ \\ \implies & A\backsimeq B ~~~(A,B合同) \\\\ \implies & A^m \sim B^m \\ \\ \implies & A^T \sim B^T \\ \\ \implies & f(A) \sim f(B) \\ \\ \implies & A^{-1} \sim B^{-1} \\ \\ \implies & f(A^{-1}) \sim f(B^{-1}) \\ \\ \end{aligned} ABP1AP=BλEAλEBμEAμEBμr(μEA)=r(μEB)r(A)=r(B)A=BλEA=λEBr(λEA)=r(λEB)A,B线aii=biiABAB   A,BAmBmATBTf(A)f(B)A1B1f(A1)f(B1)

相似对角化

A ∼ Λ    ⟺    A 有 n 个 线 性 无 关 的 特 征 向 量    ⟺    A 的 r i 重 特 征 值 有 r i 个 线 性 无 关 的 特 征 向 量 A = A T       ( A 是 实 对 称 矩 阵 )    ⟹    A 的 特 征 值 为 实 数 , 特 征 向 量 为 实 向 量    ⟹    A ∼ Λ    ⟹    A 的 属 于 不 同 特 征 值 的 特 征 向 量 相 互 正 交 \begin{aligned} & A \sim \Lambda \\ \\ \iff & A有n个线性无关的特征向量 \\\\ \iff & A的r_i重特征值有r_i个线性无关的特征向量 \\ \\ \\ \\ & A = A^T ~~~~~(A是实对称矩阵) \\ \\ \implies & A的特征值为实数,特征向量为实向量 \\ \\ \implies & A \sim \Lambda \\\\ \implies & A的属于不同特征值的特征向量相互正交 \\ \\ \end{aligned} AΛAn线Ariri线A=AT     AAAΛA

矩阵合同

A , B 合 同    ⟺    A ⋍ B    ⟺    ∃ 可 逆 矩 阵 C , 使 得 C T A C = B    ⟺    A , B 正 负 惯 性 指 数 相 同    ⟹    r ( A ) = r ( B ) = 不 能 推 出 ⇏ A , B 相 似 合 同 判 别 法 : A , B 均 为 实 对 称 矩 阵 , A , B 合 同 的 充 分 必 要 条 件 是 A , B 的 正 负 惯 性 指 数 相 同 \begin{aligned} & A,B合同 \\\\ \iff & A \backsimeq B \\\\ \iff & \exist 可逆矩阵 C,使得 C^TAC=B \\\\ \iff & A,B正负惯性指数相同 \\\\\\ \implies & r(A) = r(B) \\\\ \xlongequal{不能推出}\nRightarrow & A,B相似 \\\\\\ 合同判别法:& A,B均为实对称矩阵,A,B合同的充分必要条件是A,B的正负惯性指数相同 \end{aligned} ABABC使CTAC=BABr(A)=r(B)ABA,BA,BA,B

正定二次型

f = x T A x 正 定    ⟺    对 任 意 x ≠ 0 , x T A x > 0    ⟺    f 的 正 惯 性 指 数 p = n    ⟺    ∃ 可 逆 阵 D , 使 A = D T D    ⟺    A ⋍ E    ⟺    A 与 一 正 定 矩 阵 合 同    ⟺    ∃ 可 逆 矩 阵 P , 使 P T A P = E    ⟺    A 的 所 有 特 征 值 λ i > 0    ⟺    A 的 全 部 顺 序 主 子 式 > 0    ⟹    a i i > 0    ⟹    ∣ A ∣ > 0    ⟹    k A , A T , A k , A − 1 , A ∗ , f ( A ) 正 定 ( A O O B ) 正 定    ⟺    A , B 正 定 \begin{aligned} & f=x^TAx正定 \\\\ \iff & 对任意x \ne 0, x^TAx>0 \\ \\ \iff & f的正惯性指数 p = n \\ \\ \iff & \exists 可逆阵D,使 A = D^TD \\ \\ \iff & A \backsimeq E \\ \\ \iff & A与一正定矩阵合同 \\ \\ \iff & \exists 可逆矩阵P,使 P^TAP = E \\\\ \iff & A的所有特征值 \lambda_i>0 \\ \\ \iff & A的全部顺序主子式 > 0 \\ \\ \implies & a_{ii} >0 \\ \\ \implies & |A| > 0 \\ \\ \implies & kA, A^T,A^k, A^{-1}, A^*, f(A)正定 \\ \\ \\ & \begin{pmatrix} A & O \\ O & B \end{pmatrix} 正定 \iff A,B正定 \end{aligned} f=xTAxx=0,xTAx>0fp=nD使A=DTDAEAP使PTAP=EAλi>0A>0aii>0A>0kA,AT,Ak,A1,A,f(A)(AOOB)AB

二次型配方法(通法)

参考资料:https://www.bilibili.com/video/BV15f4y1d7Ws

情 形 1 : 二 次 型 含 有 平 方 项 , 即 ∃ a i i ≠ 0 , 不 妨 设 a 11 ≠ 0 1. 记 f 1 = 1 2 ∂ f ∂ x 1 2. 令 f ( x 1 , x 2 , x 3 , . . . ) = 1 a 11 ( f 1 ) 2 + g , 此 时 g 中 不 含 x 1 3. 对 g 继 续 对 x 2 进 行 上 述 操 作 情 形 2 : 二 次 型 不 含 平 方 项 , 即 任 意 a i i = 0 , 但 至 少 存 在 一 个 a 1 j ≠ 0 , 不 妨 设 a 12 ≠ 0 1. 记 f 1 = 1 2 ∂ f ∂ x 1 ,    f 2 = 1 2 ∂ f ∂ x 2 2. 令 f ( x 1 , x 2 , x 3 , . . . ) = 1 a 12 [ ( f 1 + f 2 ) 2 − ( f 1 − f 2 ) 2 ] + ϕ , 此 时 , ϕ 不 含 x 1 , x 2 根 据 当 前 未 配 出 的 多 项 式 , 根 据 情 况 进 行 相 应 处 理 \begin{aligned} 情形1:& 二次型含有平方项,即\exist a_{ii} \neq 0,不妨设a_{11}\neq 0 \\\\ & 1. 记 f_1 = \frac{1}{2} \frac{\partial f}{\partial x_1} \\\\ & 2. 令 f(x_1, x_2, x_3, ...) = \frac{1}{a_{11}} (f_1)^2 +g,此时g中不含x1 \\\\ & 3. 对g继续对x_2进行上述操作 \\\\ 情形2:&二次型不含平方项,即任意 a_{ii} = 0,但至少存在一个 a_{1j} \neq 0,不妨设 a_{12} \neq 0 \\ \\ & 1. 记 f_1 = \frac{1}{2} \frac{\partial f}{\partial x_1},~~f_2 = \frac{1}{2} \frac{\partial f}{\partial x_2} \\ \\ & 2. 令 f(x_1,x_2,x_3,...) = \frac{1}{a_{12}} [(f_1+f_2)^2 - (f_1-f_2)^2] + \phi, 此时,\phi不含x_1,x_2 \\ \\ \\ & 根据当前未配出的多项式,根据情况进行相应处理 \end{aligned} 12aii=0a11=01.f1=21x1f2.f(x1,x2,x3,...)=a111(f1)2+ggx13.gx2aii=0a1j=0a12=01.f1=21x1f,  f2=21x2f2.f(x1,x2,x3,...)=a121[(f1+f2)2(f1f2)2]+ϕϕx1,x2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值