NiN-网络中的网络(CNN卷积神经网络)

NiN-网络中的网络

LeNet、AlexNet和VGG都有一个共同的设计模式:

通过一系列的卷积层汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。

AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。 或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。

网络中的网络(NiN) 提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机。

NiN块

回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。

NiN的想法是在 每个像素位置(针对每个高度和宽度) 应用一个全连接层。 如果我们将权重连接到每个空间位置,我们可以将其视为 1 × 1 1 \times 1 1×1 卷积层,或作为在每个像素位置上独立作用的全连接层。 从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。

下图说明了VGGNiN及它们的块之间主要架构差异。 NiN块以一个普通卷积层开始,后面是两个 1 × 1 1 \times 1 1×1 的卷积层。这两个 1 × 1 1 \times 1 1×1 卷积层充当带有ReLU激活函数的逐像素全连接层。 第一层的卷积窗口形状通常由用户设置。 随后的卷积窗口形状固定为 1 × 1 1 \times 1 1×1

在这里插入图片描述

import torch                                        #引入依赖包
from torch import nn
from d2l import torch as d2l
#定义nin网络块
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        #定义卷积层块
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

NiN模型

最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。 NiN使用窗口形状为 11 × 11 11 \times 11 11×11 5 × 5 5 \times 5 5×5 3 × 3 3 \times 3 3×3 的卷积层,输出通道数量与AlexNet中的相同。 每个NiN块后有一个最大汇聚层,汇聚窗口形状为 3 × 3 3 \times 3 3×3 ,步幅为2。

NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。 相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个 全局平均汇聚层(global average pooling layer) ,生成一个对数几率 (logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

# 定义网络中的网络NiN模型
net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),                 #定义一个NiN块
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),                                                        #使用暂退法减低模型复杂度
    
    # 标签类别数是 10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),                                          #自定义池化层,最终样本的像素被压缩为(1, 1)
    
    #将四维的输出转成二维的输出,其形状为(批量大小, 10)
    nn.Flatten())

我们创建一个数据样本来查看每个块的输出形状。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)
    
Sequential output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Sequential output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Sequential output shape:	 torch.Size([1, 384, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 384, 5, 5])
Dropout output shape:	 torch.Size([1, 384, 5, 5])
Sequential output shape:	 torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 10, 1, 1])
Flatten output shape:	 torch.Size([1, 10])

训练模型

和之前一样,我们使用Fashion-MNIST来训练模型。训练NiN与训练AlexNet、VGG时相似。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

可见,训练集准确度为 0.853, 测试集准确度为 0.855。

小结

1.NiN使用由一个卷积层和多个 1 × 1 1 \times 1 1×1 卷积层组成的块。该块可以在卷积神经网络中使用,以允许更多的每像素非线性。

2.NiN去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层, 该汇聚层通道数量为所需的输出数量。

3.移除全连接层可减少过拟合,同时显著减少NiN的参数。

4.NiN的设计影响了许多后续卷积神经网络的设计。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值