Matlab:仿真正弦光栅的衍射传输特性

本文通过Matlab实现振幅型与相位型正弦光栅的衍射传输特性仿真,介绍了系统的参数设置及仿真过程,展示了两种类型光栅的仿真结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文基于光学原理,用Matlab实现正弦光栅的衍射传输特性仿真。


正弦光栅分类:
  • 振幅型:光栅的透过率函数符合一个正弦sin函数的分布。
  • 相位型:光栅对相位的调制符合一个正弦sin函数的分布。
Project Code
% 作者:ZQJ
% 日期:2021.11.18 星期四

%**********************正弦光栅的衍射传输特性(包括振幅型和相位型)****************************
%% 振幅型正弦光栅 ********
clear,clc,close all;
Light_transmissions = f_Lightfield_transmission;
% 系统参数设置************************
lamda = 1550e-9;       % 波长
w0 = 4e-4;             % 束腰半径
z0 = 0;
light_length = 6e-3;   % 光场边长
N = 1024;              % 矩阵像素
D = 2e-4;              % 正弦光栅的周期

[X,~] = meshgrid(linspace(-light_length/2,light_length/2,N));
gaussian_I = f_Gaussian_beams(w0,z0,lamda,light_length,light_length,N,N); 
A_sinGrating = abs(sin(2*pi*X/D));
figure,subplot(1,2,1),imagesc(gaussian_I),colormap(subplot(1,2,1),hot),axis off;axis square;     
subplot(1,2,2),imagesc(A_sinGrating),colormap(subplot(1,2,2),gray),axis off;axis square;   

E0 = gaussian_I .* A_sinGrating;
E1 = Light_transmissions.FFT_(lamda,E0,light_length,light_length,0.1);
figure,imagesc(abs(E1)),colormap hot;axis square;axis off; 

%% 相位型正弦光栅 ********
clear,clc,close all;
Light_transmissions = f_Lightfield_transmission;
% 系统参数设置************************
lamda = 1550e-9;       % 波长
w0 = 4e-4;             % 束腰半径
z0 = 0;
light_length = 6e-3;   % 光场边长
N = 1024;              % 矩阵像素
D = 2e-4;              % 正弦光栅的周期

[X,~] = meshgrid(linspace(-light_length/2,light_length/2,N));
gaussian_I = f_Gaussian_beams(w0,z0,lamda,light_length,light_length,N,N); 
A_sinGrating = exp(1i*(2*pi*abs(sin(2*pi*X/D))));
figure,subplot(1,2,1),imagesc(gaussian_I),colormap(subplot(1,2,1),hot),axis off;axis square;     
subplot(1,2,2),imagesc(angle(A_sinGrating)),colormap(subplot(1,2,2),gray),axis off;axis square;   

E0 = gaussian_I .* A_sinGrating;
E1 = Light_transmissions.FFT_(lamda,E0,light_length,light_length,0.13);
figure,imagesc(abs(E1)),colormap hot;axis square;axis off; 
Appendix Code
仿真结果图:
  • 振幅型:
    在这里插入图片描述
    在这里插入图片描述
  • 相位型:
    在这里插入图片描述
    在这里插入图片描述

专栏内容供作者本人或大家学习使用,多多指教 ~

1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值