解剖标记点检测——全自动定量头颅测量(CNN)

      版权声明:本文为博主原创文章,如果需要,请注明出处转载。          https://blog.csdn.net/qq_28618765/article/details/78193919        </div>
        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css">
                          <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css">
      <div class="htmledit_views" id="content_views">

Fully automated quantitative cephalometry using convolutional neural networks》  

Sercan Ö. Arık, Bulat Ibragimov, and Lei Xing


定量头颅测量在临床诊断、治疗和手术中起着至关重要的作用。对于这些程序的全自动化技术的开发对于实现持续准确的计算机化分析是重要的。这篇论文研究了深度卷积网络(CNN)在全自动定量头颅测量中的应用。

论文所提出的框架利用CNNs来检测解剖标记点,并产生对颌骨和颅骨区域病理学的定量估计;并证明了只输入原始图像块的CNNs将有望用于准确的定量头颅检测。


论文提出了一个基于CNN的头部图分析的第一个全自动化框架。对CNNs进行训练,以输出使用基于形状的模型组合的不同标记点位置的概率估计,CNN是多层感知器类型的深度机器学习技术的生物学启发变体,因为它们通过强加局部连接模式来利用空间局部相关性,所以它们特别适用于图像处理和识别应用。CNN已经成功被广泛地应用,包括图像分类、图像分割、图像对齐、面部标记点检测、人脸姿态估计以及车道检测等。在这些应用中,CNN达到的效果超过了人类。

本文利用只输入原始图像块的CNNs来精确地解剖标记点。作者使用CNN来模拟各个标记点一致的强度外观模式,并使用经过训练的网络来识别先前不可见的目标图像中相同的模式。关于CNN涉及到的一些基本知识,相比大家都已了解,这里就不做说明了。那么头影标记点检测的问题和CNNs又是如何被用到检测这么多标记点的呢,我们接下来来讨论一下。

要检测的标记点总共有L个, 在先前不可见的目标图像中检测标记点l( 1 ≤ l ≤ L),我们应该从训练集中的图像中学习标记点l周围的全度外观模式。而I(xi,yi)表示训练图像中以l为中心的NxN图像块,其中N足够大以便可视地识别该(xi,yi)像素的标记点。尽管大的N值从更远的位置上产生更多的信息,但是更高的维度是以更多的参数为代价来映射到输出的,也就是潜在的过拟合问题和更高的计算复杂度。我们的目的是找到L的函数gl(I(xi,yi))(对于L个标记点,假设像素值范围是(0,255)),代表像素(xi,yi)是标记点的概率估计,理想的情况下,像素点i是标记点,则gl为1,不是则为0;该函数由CNN用二进制标记的数据点进行训练。计算gl(I(xi,yi))的值的一种直接了断的方法是基于加权空间分配位置其中,hl()是启发式权重函数,但是这个方法所有标记点的空间关系的相关性;作者通过基于形状概率的模型来改进似然估计考虑候选估计的相对空间排列。对于基于形状的细化,作者考虑通过高斯核密度估计问题对空间关系进行建模的方法,并在多标记环境中应用随机森林,这在头颅分析中表现出良好的性能。读到这里,个人认为,标题所提到的全自动的概念就是源于概率估计以及相对空间排列的作用。

以下为文章所提出的检测框架和其使用基于局部信息的概率映射的CNN架构:




文章核心思想出来了,那么他们所使用的训练数据又是如何得来的呢?

在文章提出的头影标记点的检测框架中,CNNs被用来估计每一个像素是解剖标记点的可能性,它们用binary-labeled的数据点训练,判断该像素点是正确的标记点还是错误的标记点。

医学图像分析的一个共同的挑战是训练数据集太小,因为临床专家来标记真实标记点是耗时的。一个增加训练集多样性的有效策略是将相邻像素用作额外的真实标记点。在机器学习的偏差-方差折中的背景下,这个方法也被考虑。那么相邻像素到什么程度才算相邻,它偏移多少才是在可接受范围之内呢?下图给出了定义,在半径为r1的圆内是正确的标记点样本。虽然错误的标记点对最后的学习结果并不能起到很好的作用,但是我们并不能保证所有被选的点都是正确的,也就是说,错误和正确的标记点都会被采样,任何离正确标记点的远的像素都有可能被用来表示错误的标记点,所以只能确保我们所选的点在一个合理的范围内,才能减少错误标记点的影响。


如下图所示的四个例子,每一张图像都有三个标记点,每个标记点在其图像的右侧都有显示一个对应的红色虚线框,红色虚线框中白色背景表示候选点位置的概率为0,黑色的像素点表示为1。我们可以看到,CNN在检测外观模式以分配准确的概率测量方面非常成功,因为最高概率集中在ground truth landmark位置周围。另外,不同landmark的位置估算精度和置信度有所不同。


作者最后表示文章所提出的技术的主要限制是异常值的发生,这可能是由于训练和测试图像明显不同的原因。其他方面来说,他们做提出的方法能达到一个很好的效果。




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值