BN层的running_mean更新机制

在这里插入图片描述
running_mean是各通道的样本像素均值,也就是shape为(batch_size, C_out, H, W )的输入,running_mean的shape为(C_out,).
Pytorch对BatchNorm2d的官方解释文档如上所示,一般momentum是0.1,所以:

running_mean = 0.1 * mean + 0.9 * running_mean

也就是说,当前批次在某通道的均值 * 0.1 + 之前得到的running_mean * 0.9,而如果是第0批次,之前得到的running_mean初始化为0.0,也就是第0批次的running_mean = 0.1 * mean.
eval时直接使用训练时得到的running_mean。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

little student

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值