RAG 的完整流程是怎么样的?

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合外部知识检索大模型生成的技术方案,核心是通过检索相关知识片段来辅助大模型生成更准确、更可靠的回答。在Java开发环境中,RAG的完整流程可分为6个核心阶段,每个阶段都有对应的工具和实现方式。以下是详细流程及Java技术栈的落地细节:

一、RAG 完整流程总览

RAG的核心逻辑是“先检索、再生成”,通过外部知识弥补大模型“知识过时、幻觉(Hallucination)”等问题。完整流程包括:
数据准备 → 文本分割 → 嵌入(Embedding)生成 → 向量索引构建 → 检索 → 生成增强

二、各阶段详细说明(结合Java实现)

1. 数据准备(Data Preparation)

目标:收集、清洗并标准化原始数据源(如文档、数据库、网页等),为后续处理提供高质量输入。

  • 数据源类型
    结构化数据(MySQL、MongoDB)、非结构化数据(PDF、Word、HTML、TXT)、半结构化数据(JSON、XML)。

  • Java实现工具

    • 文档解析:使用 Apache Tika 处理多格式文档(PDF、Word、PPT等),支持自动识别文件类型并提取文本。
      // 示例:用Apache Tika解析PDF文档
      Tika tika = new Tika();
      try (InputStream stream = new FileInputStream("document.pdf")) {
          String text = tika.parseToString(stream); // 提取PDF中的文本内容
      }
      
    • 网页数据:用 Jsoup 爬取并解析HTML页面,提取正文内容(去除标签、广告等噪声)。
      // 示例:用Jsoup提取网页文本
      Document doc = Jsoup.connect("https://example.com/article").get();
      Elements content = doc.select("div.article-content"); // 定位正文标签
      String text = content.text(); // 提取文本
      
    • 数据清洗:通过Java字符串工具(String 类、Pattern 正则)或 Apache Commons Text 去除冗余信息(如特殊符号、重复内容)、标准化格式(如统一大小写、日期格式)。
2. 文本分割(Chunking)

目标:将长文本拆分为短片段(Chunk),适配大模型的上下文窗口限制,同时保留片段的语义完整性。

  • 分割策略

    • 按固定长度(如500字符)分割,避免片段过长;
    • 按语义单元(句子、段落)分割,减少语义割裂(如基于标点符号或NLP工具的句子切分)。
  • Java实现工具

    • LangChain4j(Java版RAG框架):提供 RecursiveCharacterTextSplitter 等分割器,支持按长度和分隔符分割。
      // 示例:用LangChain4j分割文本
      TextSplitter splitter = RecursiveCharacterTextSplitter.builder()
          .chunkSize(500) // 片段最大长度
          .chunkOverlap(50) // 片段重叠部分(保持上下文关联)
          .build();
      List<String> chunks = splitter.split(text); // 分割后的文本片段列表
      
    • 自定义实现:基于 BreakIterator(Java内置的文本边界迭代器)按句子分割。
      // 示例:按句子分割
      List<String> sentences = new ArrayList<>();
      BreakIterator iterator = BreakIterator.getSentenceInstance(Locale.ENGLISH);
      iterator.setText(text);
      int start = iterator.first();
      for (int end = iterator.next(); end != BreakIterator.DONE; start = end, end = iterator.next()) {
          sentences.add(text.substring(start, end));
      }
      
3. 嵌入(Embedding)生成

目标:将文本片段(Chunk)转换为高维向量(Embedding),使语义相似的文本在向量空间中距离更近,为后续检索提供数学基础。

  • 核心逻辑:通过预训练的嵌入模型(如BERT、Sentence-BERT、OpenAI Embedding)将文本映射为向量。

  • Java实现工具

    • 调用外部API:通过Java的 HttpClient 调用OpenAI、百度文心等的Embedding接口(适合无本地模型部署资源的场景)。
      // 示例:调用OpenAI Embedding API生成向量
      HttpClient client = HttpClient.newHttpClient();
      HttpRequest request = HttpRequest.newBuilder()
          .uri(URI.create("https://api.openai.com/v1/embeddings"))
          .header("Content-Type", "application/json")
          .header("Authorization", "Bearer YOUR_API_KEY")
          .POST(HttpRequest.BodyPublishers.ofString("{\"model\":\"text-embedding-ada-002\",\"input\":\"" + chunk + "\"}"))
          .build();
      client.sendAsync(request, HttpResponse.BodyHandlers.ofString())
          .thenApply(HttpResponse::body)
          .thenAccept(response -> {
              // 解析响应,提取向量(response为JSON格式)
              JSONArray embedding = new JSONObject(response).getJSONArray("data").getJSONObject(0).getJSONArray("embedding");
          });
      
    • 本地模型部署:使用 Deeplearning4j(Java深度学习框架)加载开源嵌入模型(如Sentence-BERT的Java版本),或通过 LangChain4j 集成本地模型。
      // 示例:LangChain4j集成本地嵌入模型
      EmbeddingModel embeddingModel = new SentenceTransformerEmbeddingModel("all-MiniLM-L6-v2"); // 加载开源模型
      List<Embedding> embeddings = embeddingModel.embedAll(chunks); // 批量生成向量
      
4. 向量索引构建(Vector Indexing)

目标:将文本片段的向量存储到向量数据库中,构建高效的索引结构,支持快速相似度检索。

  • 核心需求:向量数据库需支持高维向量的近似最近邻(ANN)搜索,常见的有Milvus、Qdrant、Weaviate、Elasticsearch(需安装向量插件)。

  • Java实现工具

    • Milvus Java SDK:Milvus是开源向量数据库,支持Java客户端操作。
      // 示例:用Milvus创建集合并插入向量
      MilvusClient client = new MilvusClient("http://localhost:19530");
      // 1. 创建集合(定义向量维度,如384维)
      client.createCollection(CreateCollectionParam.newBuilder()
          .collectionName("rag_collection")
          .addFieldType(FieldType.newBuilder()
              .name("id")
              .dataType(DataType.Int64)
              .isPrimaryKey(true)
              .build())
          .addFieldType(FieldType.newBuilder()
              .name("embedding")
              .dataType(DataType.FloatVector)
              .dimension(384)
              .build())
          .build());
      // 2. 插入向量(每个向量对应一个文本片段)
      List<InsertParam.Field> fields = new ArrayList<>();
      fields.add(new InsertParam.Field("id", Arrays.asList(1L, 2L))); // 文本片段ID
      fields.add(new InsertParam.Field("embedding", embeddings.stream()
          .map(emb -> emb.getVector()) // 提取向量数组
          .collect(Collectors.toList())));
      client.insert(InsertParam.newBuilder()
          .collectionName("rag_collection")
          .fields(fields)
          .build());
      // 3. 创建索引(加速检索)
      client.createIndex(CreateIndexParam.newBuilder()
          .collectionName("rag_collection")
          .fieldName("embedding")
          .indexType(IndexType.IVF_FLAT) // 索引类型
          .metricType(MetricType.COSINE) // 相似度计算方式(余弦相似度)
          .build());
      
    • LangChain4j集成:LangChain4j支持多种向量数据库的封装,简化索引操作。
      // 示例:LangChain4j连接Qdrant
      VectorStore vectorStore = QdrantVectorStore.builder()
          .host("localhost")
          .port(6334)
          .collectionName("rag_collection")
          .build();
      vectorStore.add(Document.from(chunks)); // 自动生成向量并存储(需配置embeddingModel)
      
5. 检索(Retrieval)

目标:针对用户输入的问题,生成问题的向量,在向量数据库中检索出与问题语义最相似的文本片段(Top-K结果)。

  • 核心逻辑

    1. 将用户问题转换为向量(使用与文本片段相同的嵌入模型);
    2. 在向量数据库中执行相似度查询,返回Top-K(如Top5)最相关的文本片段。
  • Java实现工具

    • 向量数据库客户端:直接调用数据库的检索接口。
      // 示例:Milvus检索相似向量
      // 1. 生成问题的向量
      Embedding queryEmbedding = embeddingModel.embed("用户的问题是什么?");
      // 2. 检索Top5相似结果
      SearchResults results = client.search(SearchParam.newBuilder()
          .collectionName("rag_collection")
          .vectorFieldName("embedding")
          .vectors(Collections.singletonList(queryEmbedding.getVector()))
          .limit(5)
          .metricType(MetricType.COSINE)
          .build());
      // 3. 提取检索到的文本片段ID和相似度分数
      List<Long> matchedIds = results.getResults().get(0).getScores().stream()
          .map(scoreInfo -> scoreInfo.getEntity().getLong("id"))
          .collect(Collectors.toList());
      
    • LangChain4j检索器:封装检索逻辑,直接返回相关文档。
      Retriever<Document> retriever = vectorStore.retriever();
      List<Document> relevantDocs = retriever.retrieve("用户的问题是什么?"); // 直接获取相关文本片段
      
6. 生成增强(Generation)

目标:将检索到的文本片段与用户问题拼接为提示词(Prompt),输入大模型,生成基于外部知识的回答。

  • 核心逻辑:提示词需明确告知模型“基于以下知识回答问题”,避免模型依赖内部知识(减少幻觉)。

  • Java实现工具

    • 调用大模型API:通过Java HttpClient 调用OpenAI、GPT-4、讯飞星火等API。
      // 示例:调用OpenAI Chat API生成回答
      String prompt = "基于以下知识回答问题:\n" + 
          relevantDocs.stream().map(Document::getContent).collect(Collectors.joining("\n")) + 
          "\n问题:用户的问题是什么?";
      HttpRequest request = HttpRequest.newBuilder()
          .uri(URI.create("https://api.openai.com/v1/chat/completions"))
          .header("Content-Type", "application/json")
          .header("Authorization", "Bearer YOUR_API_KEY")
          .POST(HttpRequest.BodyPublishers.ofString("{\"model\":\"gpt-3.5-turbo\",\"messages\":[{\"role\":\"user\",\"content\":\"" + prompt + "\"}]}"))
          .build();
      // 解析响应获取回答
      String response = client.send(request, HttpResponse.BodyHandlers.ofString()).body();
      String answer = new JSONObject(response).getJSONArray("choices").getJSONObject(0).getJSONObject("message").getString("content");
      
    • LangChain4j LLM集成:简化大模型调用,支持链式操作。
      // 示例:LangChain4j调用大模型
      ChatLanguageModel llm = OpenAiChatModel.builder()
          .apiKey("YOUR_API_KEY")
          .modelName("gpt-3.5-turbo")
          .build();
      // 构建RAG链:检索器 + 大模型
      RAGChain ragChain = RAGChain.builder()
          .retriever(retriever)
          .llm(llm)
          .build();
      // 直接获取回答
      String answer = ragChain.generate("用户的问题是什么?");
      
7. 优化与迭代(可选)
  • 重新排序(Reranking):对检索到的Top-K结果用更精细的模型(如交叉编码器)二次排序,提升相关性(Java可使用 CrossEncoder 类库)。
  • 评估:通过人工或自动化指标(如BLEU、ROUGE)评估回答准确率,迭代优化文本分割策略、嵌入模型或检索参数。

三、Java生态中RAG开发的核心框架:LangChain4j

LangChain4j是Java版的RAG开发框架,封装了文本分割、嵌入生成、向量存储、大模型调用等全流程组件,大幅简化开发。其核心优势:

  • 支持主流向量数据库(Milvus、Qdrant等)、嵌入模型(OpenAI、开源模型)、大模型(GPT、文心一言等);
  • 提供声明式API,无需关注底层细节,快速搭建RAG流程。

总结

RAG的完整流程是“数据处理→文本分割→向量生成→索引构建→检索→增强生成”,在Java环境中可通过LangChain4j、Apache Tika、Milvus SDK等工具实现。核心价值是让大模型结合外部知识生成更可靠的回答,解决其知识过时、幻觉等问题,适用于智能问答、文档助手等场景。

<think>嗯,用户想了解RAG完整流程,而且特别强调要参考站内引用内容。之前用户还问过Google ADK的问题,看来ta对技术细节很感兴趣。 从引用内容看,用户提供的资料非常全面:[1]提到模块化RAG的发展,[2]展示了完整流程图,[3]强调智能化趋势,[4]则解释LLM的两次调用。需要把这些核心点有机整合起来。 用户可能是个开发者或技术研究者,正在搭建RAG系统。ta特意要求"完整流程详解",说明需要实操指导而非概念科普。要注意避免过于学术化的表述,重点突出工作流的时间顺序和技术衔接点。 准备分三部分组织回答:首先用流程图建立整体认知,然后分步拆解离线/在线阶段,最后补充趋势说明。特别要强调[4]提到的两次LLM调用这个关键细节,很多初学者容易混淆embedding模型和生成模型的关系。 引用标注要自然融入内容,比如说到文档切分时关联[2],提到模块化时引用[1]。最后的问题设计可以引导用户深入具体环节,比如预处理优化或重排序实现,这样能帮ta解决后续实操可能遇到的障碍。</think>以下是RAG(Retrieval-Augmented Generation)的完整流程详解,结合离线预处理与在线推理两阶段,并参考最新技术演进趋势: --- ### **RAG 核心流程图** ```mermaid graph LR A[离线预处理] --> B[文档加载] B --> C[文档切分] C --> D[向量化] D --> E[向量存储] F[在线推理] --> G[用户提问] G --> H[问题向量化] H --> I[向量检索] I --> J[Top-k片段融合] J --> K[LLM生成回答] K --> L[返回答案] ``` --- ### **一、离线预处理阶段** [^2][^4] 1. **文档加载** - 从本地文件(PDF/Word/TXT)、数据库或网络爬虫获取原始文档。 - 支持多模态数据(未来趋势:图像/音频向量化)[^3]。 2. **文档切分** - 按语义分割文本(如按段落/句子),避免信息碎片化。 - 常用策略:滑动窗口(Sliding Window)、层次化分割(Hierarchical Chunking)[^2]。 3. **向量化** - 使用嵌入模型(如BERT、text-embedding-ada)将文本块转为向量: $$ \text{Vector} = \text{Embedding}(\text{Chunk}) $$ - 关键要求:保持语义相似性(如"猫"与"犬"向量距离应小于"汽车")[^4]。 4. **向量存储** - 存入向量数据库(如FAISS、Pinecone、Milvus)。 - 建立高效索引(HNSW、IVF-PQ)加速检索[^2]。 --- ### **二、在线推理阶段** [^2][^4] 1. **用户提问向量化** - 使用**相同嵌入模型**将查询转为向量: $$ \text{Query\_vec} = \text{Embedding}(\text{User\_Question}) $$ 2. **向量检索** - 计算查询向量与文档向量的相似度(如余弦相似度): $$ \text{Similarity} = \frac{\text{Query\_vec} \cdot \text{Doc\_vec}}{||\text{Query\_vec}|| \cdot ||\text{Doc\_vec}||} $$ - 返回Top-k最相关片段(k通常为3-10)[^4]。 3. **上下文融合** - 将检索片段与原始问题拼接为提示词(Prompt): ``` [检索片段1] [检索片段2] 问题:{User_Question} ``` - 高级优化:重排序(Re-Rank)过滤噪声[^3]。 4. **生成最终答案** - 将融合后的Prompt输入**生成式LLM**(如GPT-4、LLaMA): $$ \text{Answer} = \text{LLM}(\text{Prompt}) $$ - 输出带溯源引用(如标注来源文档)[^1]。 --- ### **三、技术演进与优化方向** [^1][^3] 1. **模块化设计** - 替换独立模块(如检索器→生成器)而不影响整体流程。 - 示例:将基础检索升级为混合搜索(关键词+向量+图检索)。 2. **智能增强** - **查询改写**:LLM先优化模糊问题(如“解释RAG” → “分步说明RAG流程”)。 - **迭代检索**:根据初次结果动态补充检索(Self-RAG技术)。 3. **多模态扩展** - 支持图像/表格向量化(如CLIP模型),实现跨模态检索[^3]。 --- ### **关键点总结** 1. **LLM的两次调用** - 第一次:嵌入模型生成向量(可复用轻量模型如BGE)。 - 第二次:生成模型输出答案(需强推理能力模型)[^4]。 2. **流程瓶颈** - 检索质量 > 生成质量:劣质检索片段必然导致错误答案。 3. **核心价值** - 解决LLM幻觉问题,提供可验证、可溯源的回答[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值