RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合外部知识检索与大模型生成的技术方案,核心是通过检索相关知识片段来辅助大模型生成更准确、更可靠的回答。在Java开发环境中,RAG的完整流程可分为6个核心阶段,每个阶段都有对应的工具和实现方式。以下是详细流程及Java技术栈的落地细节:
一、RAG 完整流程总览
RAG的核心逻辑是“先检索、再生成”,通过外部知识弥补大模型“知识过时、幻觉(Hallucination)”等问题。完整流程包括:
数据准备 → 文本分割 → 嵌入(Embedding)生成 → 向量索引构建 → 检索 → 生成增强
二、各阶段详细说明(结合Java实现)
1. 数据准备(Data Preparation)
目标:收集、清洗并标准化原始数据源(如文档、数据库、网页等),为后续处理提供高质量输入。
-
数据源类型:
结构化数据(MySQL、MongoDB)、非结构化数据(PDF、Word、HTML、TXT)、半结构化数据(JSON、XML)。 -
Java实现工具:
- 文档解析:使用
Apache Tika处理多格式文档(PDF、Word、PPT等),支持自动识别文件类型并提取文本。// 示例:用Apache Tika解析PDF文档 Tika tika = new Tika(); try (InputStream stream = new FileInputStream("document.pdf")) { String text = tika.parseToString(stream); // 提取PDF中的文本内容 } - 网页数据:用
Jsoup爬取并解析HTML页面,提取正文内容(去除标签、广告等噪声)。// 示例:用Jsoup提取网页文本 Document doc = Jsoup.connect("https://example.com/article").get(); Elements content = doc.select("div.article-content"); // 定位正文标签 String text = content.text(); // 提取文本 - 数据清洗:通过Java字符串工具(
String类、Pattern正则)或Apache Commons Text去除冗余信息(如特殊符号、重复内容)、标准化格式(如统一大小写、日期格式)。
- 文档解析:使用
2. 文本分割(Chunking)
目标:将长文本拆分为短片段(Chunk),适配大模型的上下文窗口限制,同时保留片段的语义完整性。
-
分割策略:
- 按固定长度(如500字符)分割,避免片段过长;
- 按语义单元(句子、段落)分割,减少语义割裂(如基于标点符号或NLP工具的句子切分)。
-
Java实现工具:
- LangChain4j(Java版RAG框架):提供
RecursiveCharacterTextSplitter等分割器,支持按长度和分隔符分割。// 示例:用LangChain4j分割文本 TextSplitter splitter = RecursiveCharacterTextSplitter.builder() .chunkSize(500) // 片段最大长度 .chunkOverlap(50) // 片段重叠部分(保持上下文关联) .build(); List<String> chunks = splitter.split(text); // 分割后的文本片段列表 - 自定义实现:基于
BreakIterator(Java内置的文本边界迭代器)按句子分割。// 示例:按句子分割 List<String> sentences = new ArrayList<>(); BreakIterator iterator = BreakIterator.getSentenceInstance(Locale.ENGLISH); iterator.setText(text); int start = iterator.first(); for (int end = iterator.next(); end != BreakIterator.DONE; start = end, end = iterator.next()) { sentences.add(text.substring(start, end)); }
- LangChain4j(Java版RAG框架):提供
3. 嵌入(Embedding)生成
目标:将文本片段(Chunk)转换为高维向量(Embedding),使语义相似的文本在向量空间中距离更近,为后续检索提供数学基础。
-
核心逻辑:通过预训练的嵌入模型(如BERT、Sentence-BERT、OpenAI Embedding)将文本映射为向量。
-
Java实现工具:
- 调用外部API:通过Java的
HttpClient调用OpenAI、百度文心等的Embedding接口(适合无本地模型部署资源的场景)。// 示例:调用OpenAI Embedding API生成向量 HttpClient client = HttpClient.newHttpClient(); HttpRequest request = HttpRequest.newBuilder() .uri(URI.create("https://api.openai.com/v1/embeddings")) .header("Content-Type", "application/json") .header("Authorization", "Bearer YOUR_API_KEY") .POST(HttpRequest.BodyPublishers.ofString("{\"model\":\"text-embedding-ada-002\",\"input\":\"" + chunk + "\"}")) .build(); client.sendAsync(request, HttpResponse.BodyHandlers.ofString()) .thenApply(HttpResponse::body) .thenAccept(response -> { // 解析响应,提取向量(response为JSON格式) JSONArray embedding = new JSONObject(response).getJSONArray("data").getJSONObject(0).getJSONArray("embedding"); }); - 本地模型部署:使用
Deeplearning4j(Java深度学习框架)加载开源嵌入模型(如Sentence-BERT的Java版本),或通过LangChain4j集成本地模型。// 示例:LangChain4j集成本地嵌入模型 EmbeddingModel embeddingModel = new SentenceTransformerEmbeddingModel("all-MiniLM-L6-v2"); // 加载开源模型 List<Embedding> embeddings = embeddingModel.embedAll(chunks); // 批量生成向量
- 调用外部API:通过Java的
4. 向量索引构建(Vector Indexing)
目标:将文本片段的向量存储到向量数据库中,构建高效的索引结构,支持快速相似度检索。
-
核心需求:向量数据库需支持高维向量的近似最近邻(ANN)搜索,常见的有Milvus、Qdrant、Weaviate、Elasticsearch(需安装向量插件)。
-
Java实现工具:
- Milvus Java SDK:Milvus是开源向量数据库,支持Java客户端操作。
// 示例:用Milvus创建集合并插入向量 MilvusClient client = new MilvusClient("http://localhost:19530"); // 1. 创建集合(定义向量维度,如384维) client.createCollection(CreateCollectionParam.newBuilder() .collectionName("rag_collection") .addFieldType(FieldType.newBuilder() .name("id") .dataType(DataType.Int64) .isPrimaryKey(true) .build()) .addFieldType(FieldType.newBuilder() .name("embedding") .dataType(DataType.FloatVector) .dimension(384) .build()) .build()); // 2. 插入向量(每个向量对应一个文本片段) List<InsertParam.Field> fields = new ArrayList<>(); fields.add(new InsertParam.Field("id", Arrays.asList(1L, 2L))); // 文本片段ID fields.add(new InsertParam.Field("embedding", embeddings.stream() .map(emb -> emb.getVector()) // 提取向量数组 .collect(Collectors.toList()))); client.insert(InsertParam.newBuilder() .collectionName("rag_collection") .fields(fields) .build()); // 3. 创建索引(加速检索) client.createIndex(CreateIndexParam.newBuilder() .collectionName("rag_collection") .fieldName("embedding") .indexType(IndexType.IVF_FLAT) // 索引类型 .metricType(MetricType.COSINE) // 相似度计算方式(余弦相似度) .build()); - LangChain4j集成:LangChain4j支持多种向量数据库的封装,简化索引操作。
// 示例:LangChain4j连接Qdrant VectorStore vectorStore = QdrantVectorStore.builder() .host("localhost") .port(6334) .collectionName("rag_collection") .build(); vectorStore.add(Document.from(chunks)); // 自动生成向量并存储(需配置embeddingModel)
- Milvus Java SDK:Milvus是开源向量数据库,支持Java客户端操作。
5. 检索(Retrieval)
目标:针对用户输入的问题,生成问题的向量,在向量数据库中检索出与问题语义最相似的文本片段(Top-K结果)。
-
核心逻辑:
- 将用户问题转换为向量(使用与文本片段相同的嵌入模型);
- 在向量数据库中执行相似度查询,返回Top-K(如Top5)最相关的文本片段。
-
Java实现工具:
- 向量数据库客户端:直接调用数据库的检索接口。
// 示例:Milvus检索相似向量 // 1. 生成问题的向量 Embedding queryEmbedding = embeddingModel.embed("用户的问题是什么?"); // 2. 检索Top5相似结果 SearchResults results = client.search(SearchParam.newBuilder() .collectionName("rag_collection") .vectorFieldName("embedding") .vectors(Collections.singletonList(queryEmbedding.getVector())) .limit(5) .metricType(MetricType.COSINE) .build()); // 3. 提取检索到的文本片段ID和相似度分数 List<Long> matchedIds = results.getResults().get(0).getScores().stream() .map(scoreInfo -> scoreInfo.getEntity().getLong("id")) .collect(Collectors.toList()); - LangChain4j检索器:封装检索逻辑,直接返回相关文档。
Retriever<Document> retriever = vectorStore.retriever(); List<Document> relevantDocs = retriever.retrieve("用户的问题是什么?"); // 直接获取相关文本片段
- 向量数据库客户端:直接调用数据库的检索接口。
6. 生成增强(Generation)
目标:将检索到的文本片段与用户问题拼接为提示词(Prompt),输入大模型,生成基于外部知识的回答。
-
核心逻辑:提示词需明确告知模型“基于以下知识回答问题”,避免模型依赖内部知识(减少幻觉)。
-
Java实现工具:
- 调用大模型API:通过Java
HttpClient调用OpenAI、GPT-4、讯飞星火等API。// 示例:调用OpenAI Chat API生成回答 String prompt = "基于以下知识回答问题:\n" + relevantDocs.stream().map(Document::getContent).collect(Collectors.joining("\n")) + "\n问题:用户的问题是什么?"; HttpRequest request = HttpRequest.newBuilder() .uri(URI.create("https://api.openai.com/v1/chat/completions")) .header("Content-Type", "application/json") .header("Authorization", "Bearer YOUR_API_KEY") .POST(HttpRequest.BodyPublishers.ofString("{\"model\":\"gpt-3.5-turbo\",\"messages\":[{\"role\":\"user\",\"content\":\"" + prompt + "\"}]}")) .build(); // 解析响应获取回答 String response = client.send(request, HttpResponse.BodyHandlers.ofString()).body(); String answer = new JSONObject(response).getJSONArray("choices").getJSONObject(0).getJSONObject("message").getString("content"); - LangChain4j LLM集成:简化大模型调用,支持链式操作。
// 示例:LangChain4j调用大模型 ChatLanguageModel llm = OpenAiChatModel.builder() .apiKey("YOUR_API_KEY") .modelName("gpt-3.5-turbo") .build(); // 构建RAG链:检索器 + 大模型 RAGChain ragChain = RAGChain.builder() .retriever(retriever) .llm(llm) .build(); // 直接获取回答 String answer = ragChain.generate("用户的问题是什么?");
- 调用大模型API:通过Java
7. 优化与迭代(可选)
- 重新排序(Reranking):对检索到的Top-K结果用更精细的模型(如交叉编码器)二次排序,提升相关性(Java可使用
CrossEncoder类库)。 - 评估:通过人工或自动化指标(如BLEU、ROUGE)评估回答准确率,迭代优化文本分割策略、嵌入模型或检索参数。
三、Java生态中RAG开发的核心框架:LangChain4j
LangChain4j是Java版的RAG开发框架,封装了文本分割、嵌入生成、向量存储、大模型调用等全流程组件,大幅简化开发。其核心优势:
- 支持主流向量数据库(Milvus、Qdrant等)、嵌入模型(OpenAI、开源模型)、大模型(GPT、文心一言等);
- 提供声明式API,无需关注底层细节,快速搭建RAG流程。
总结
RAG的完整流程是“数据处理→文本分割→向量生成→索引构建→检索→增强生成”,在Java环境中可通过LangChain4j、Apache Tika、Milvus SDK等工具实现。核心价值是让大模型结合外部知识生成更可靠的回答,解决其知识过时、幻觉等问题,适用于智能问答、文档助手等场景。
415

被折叠的 条评论
为什么被折叠?



