第四章 查找
4.1 有序数组的查找
- 有序->二分查找,注意边界值
4.2 行列递增矩阵的查找
- 分治法:对角线查找,介于两者之间,查找左下和右上
- 定位法,从右上角,如果更小,向左走,如果更大,向下走
4.3 出现次数超过一半的数
- 排序,找n/2位置的数输出
- 每次删除两个不同的数,最后剩下一个
- candidate保存上次遍历到的数值,如果当前与原来相同ntimes++,不同–,初始化为1,最后返回最后一次把ntimes置为1的数
4.4 字符串的查找
-
KMP算法
- next数组的求解:初值next[0]=-1,j=-1;循环,i 1-n-1,每次如果s[i]=s[j+1],令next[i]=j;如果不等,则令j=next[j],一直向前找
- KMP时,先计算模式串的next数组,后面的程序和next求解类似,换成s[i]==p[j+1]的判断,如果j=m-1则返回,匹配成功
- next数组的求解:初值next[0]=-1,j=-1;循环,i 1-n-1,每次如果s[i]=s[j+1],令next[i]=j;如果不等,则令j=next[j],一直向前找
-
如果要统计次数
-
优化:跳过无意义的回退nextval数组
http://codeup.cn/problem.php?id=1751
#include<bits/stdc++.h>
using namespace std;
int next[110];
int Next(char s[]){
int len=strlen(s);
int i,j=-1;
next[0]=-1;
for(i=1;i<len;i++){
while(j!=-1&&s[i]!=s[j+1]){
j=next[j];
}
if(s[i]==s[j+1]){
j++;
}
next[i]=j;
}
return 0;
}
int Check(char p[],char s[]){
int m=strlen(s);
int i,j=-1;
for(i=0;i<strlen(p);i++){
while(j!=-1&&p[i]!=s[j+1]){
j=next[j];
}
if(p[i]==s[j+1]){
j++;
}
if(j==m-1){
return i-1;
}
}
return 0;
}
int main(){
char p[110],s[110];
cin>>p>>s;
Next(s);
int re=Check(p,s);
cout<<re;
return 0;
}