import copy
a = [1, [2, 3], 3, 4, 5, 6, 7] # a是一个嵌套列表
b = a # 【赋值】
c = copy.copy(a) # 【浅拷贝】或者 c=a.copy()
d = copy.deepcopy(a) # 【深拷贝】
print('a:', a, ' id:', id(a))
print('b:', b, ' id:', id(b))
print('c:', c, ' id:', id(c))
print('d:', d, ' id:', id(d))
输出:
a: [1, [2, 3], 3, 4, 5, 6, 7] id: 1854756909248
b: [1, [2, 3], 3, 4, 5, 6, 7] id: 1854756909248
c: [1, [2, 3], 3, 4, 5, 6, 7] id: 1854756873088
d: [1, [2, 3], 3, 4, 5, 6, 7] id: 1854756981504
表面上的值是一样的,但是实际上它们的内存地址不一样。
赋值:
所生成的b和a具有相同的地址,也就是没有开辟新的地址,对b的后续操作会影响到a,对a的后续操作为影响到b,它们两个其实是一回事儿。
浅拷贝:
开辟新的地址,为新的对象赋予新的空间。之所以是“浅”拷贝,是因为它只为第一层开辟了新的地址,更深层的变量空间没有开辟,和原来一样。
深拷贝:
开辟新的地址,为新的对象赋予新的空间。之所以是“深”拷贝,是因为它所有深层的变量空间也被开辟,完全都是新的空间。
print("------------更深层次的变量空间,比较:")
print('a[1] id', id(a[1]))
print('b[1] id', id(b[1]))
print('c[1] id', id(c[1]))
print('d[1] id', id(d[1]))
------------更深层次的变量空间,比较:
a[1] id 2763538181312
b[1] id 2763538181312
c[1] id 2763538181312
d[1] id 2763538205824
个人观点:什么时候用赋值,浅拷贝以及深拷贝,得综合考虑内存消耗。不考虑这么多,如果想克隆一个新变量,并且避免原变量变换对新变量的干扰,最好还是用深拷贝。
参考: