D-数据中心

D-数据中心

一、题目描述

在这里插入图片描述
Example
Input

4
5
1
1 2 3
1 3 4
1 4 5
2 3 8
3 4 2

Output

4

Note
在这里插入图片描述

二、思路与算法

本题核心算法为并查集+Kruskal算法。

回忆Kruskal算法:

  • 每次挑一条成本最小的边,检查是否合法,合法则加入边集中。

分析题意,核心就是要找到一个最大边权最小的生成树。
那么我们仍然用结构体存储+重载操作符+sort升序排列,每次从结构体数组中取出目前边权最小的一条边。
如果合法则进行合并,同时检查生成树的最大边权是否需要更新。

最终输出最大边权即可。

三、代码实现

#include<cstdio>
#include<algorithm>
using namespace std;

 const int N=50005;
 const int M=100005;
 struct edge{
 	int u,v,w;
 	bool operator<(const edge &t)const{ return w<t.w;}
 }e[M];
 int n,m,rt;
 int f[N];
 
 void init(int n){
 	for(int i=1;i<=n;i++){
 		f[i]=i;
	 }
 }
 
 int find(int x){
 	return f[x]==x?x:f[x]=find(f[x]);
 }
 
 bool unite(int x,int y){
 	x=find(x);	y=find(y);
 	if(x==y){return false;	 }
 	f[x]=y;
 	return true;
}

int kruskal_return_max(){
	sort(e+1,e+1+m);
	int cnt=0,ans=0;
	for(int i=1;i<=m;i++){
		if(unite(e[i].u,e[i].v)){
			ans=max(ans,e[i].w);
			if(++cnt==n-1){break;	}
		}
	}
	return cnt==n-1?ans:-1;
}

int main(){
	scanf("%d%d%d",&n,&m,&rt);
	init(n);
	for(int i=1;i<=m;i++){
		scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
	}
	printf("%d\n",kruskal_return_max());
	return 0;
}

四、经验与总结

  1. 求最小的最大边权,可以联想到二分法,每次检查用小于ans的边是否可以包含所有点,如果可以,则ans减小,若无法联通,则ans增大。
    最终ans就是可以连通所有点的,最小的最大边权。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值