一.为什么光有反投影不足以得到质量较好的图像,下面这个图像能很好的说明问题,图像的边缘模糊
二…中心切片定理
二维图像的中心切片定理指出:二维函数 f(x, y) 的投影 p(s) 之傅里叶变换 P(ω) 等于函数 f(x, y) 的傅里叶变换 F(ωx, ωy) 沿与探测器平行的方向过原点的片段
1.一维连续傅里叶变换对:
二维连续傅里叶变换对:
2.根据中心切片的定义,如果探测器绕物体旋转至少180°,物体的二维傅里叶变换 ) , F (ωx, ωy) 所对应于探测器方向的中心片段就能覆盖整个傅里叶空间,也就是说,知道物体的二维的傅里叶变换,二维傅里叶反变换就可以恢复出物体
3.中心切片定理的证明:
三.FBP (Filtered Backprojection 先滤波后反投影) 算法
从上面的频域图来看,每一个角度的投影的傅里叶变换,是穿过频域坐标中心的一条直线,最后形成一个点散射的形状,中心片段在 ωx-ωy 平面的原点的密度高于在远离原点的区域的密度,而在傅里叶空间原点附近的区域是低频区域。对低频分量的过分加权导致图像变得模糊。为了消除模糊的效果,我们对傅里叶空间要进行加权矫正,使其密度均匀。因此使用了一个低频滤波器,|w|,抑制低频成分,提高图像的清晰度
近期补上剩下的部分