通道注意力ECA-Net--CVPR2020

ECA-Net是CVPR2020上提出的一种改进的通道注意力方法,针对SENet的通道注意模块进行了优化。通过使用一维卷积替代全连接层,减少了参数计算量,提高了性能。ECA模块利用1D卷积自适应地捕获跨通道交互,且通过共享权重减少参数数量。此外,文章提出了一种自适应选择卷积核大小的方法,确保不同通道数场景下的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文名称:ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

论文地址:https://arxiv.org/abs/1910.03151

代码: https://github.com/BangguWu/ECANet

 这是一篇CVPR2020上对通道注意力进行改进的文章---ECANet,ECANet主要对SENet模块进行了一些改进,提出了一种不降维的局部跨信道交互策略(ECA模块)和自适应选择一维卷积核大小的方法,从而实现了性能上的提优。


目录

实验效果

创新点

pytorch代码实现


实验效果

创新点

  1. 针对SEBlock的步骤(3),将MLP模块(FC->ReLU>FC->Sigmoid),转变为一维卷积的形式,有效减少了参数计算量(我们都知道在CNN网络中,往往连接层是参数量巨大的,因此将全连接层改为一维卷积的形式)。
  2. 一维卷积自带的功效就是非全连接,每一次卷积过程只和部分通道的作用,即实现了适当的跨通道交互而不是像全连接层一样全通道交互。

首先回顾一下SENet中的通道注意模块。具体来说,在给定输入特征的情况下,SE块首先对每个通道单独使用全局平均池化,然后使用两个具有非线性的完全连接(FC)层,然后使用一个Sigmoid函数来生成通道权值。两个FC层的设计是为了捕捉非线性的跨通道交互,其中包括降维

<think>好的,我需要帮助用户查找ECA-Net的架构图。首先,我得确认用户需要的是哪种架构图,是模型结构图还是模块设计图。ECA-Net(Efficient Channel Attention Network)是一种用于计算机视觉的注意力机制网络,主要用于增强卷积神经网络的特征表示能力。 接下来,我应该回忆ECA-Net的主要组成部分。根据论文,ECA-Net通过引入通道注意力机制,使用一维卷积来捕获跨通道的交互,避免了降维带来的副作用。它的核心模块是ECA(Efficient Channel Attention)模块,通常嵌入在CNN的主干网络中,比如ResNet。 然后,我需要考虑如何引导用户找到架构图。常见的途径包括查阅原始论文、GitHub仓库、学术博客或会议演讲材料。用户可能需要具体的实现细节或模块结构,所以建议他们参考原始论文中的图1,通常会展示ECA模块的结构和整体网络集成方式。 另外,用户可能对代码实现感兴趣,因此可以推荐GitHub上的开源实现,并附上一个简单的PyTorch代码示例,说明ECA模块的结构。这有助于用户更直观地理解架构。 最后,生成相关问题,帮助用户深入理解ECA-Net的应用和扩展,比如与其他注意力机制的比较、如何集成到其他网络以及性能指标等。确保回答符合格式要求,正确使用LaTeX,引用相关段落时添加标识符。</think>ECA-Net(Efficient Channel Attention Network)是一种轻量级的通道注意力网络,其架构图通常包含以下核心组件: 1. **全局平均池化层**:用于提取通道特征统计量 2. **一维卷积层**:实现跨通道交互,卷积核大小$k$通过自适应函数确定: $$k = \psi(C) = \frac{| \frac{\log_2(C)}{\gamma} + \frac{b}{\gamma} |}{\text{odd}}$$ 其中$C$为通道数,$\gamma$和$b$为超参数[^1] 3. **Sigmoid激活函数**:生成通道注意力权重 建议通过以下途径获取架构图: 1. **原始论文**:CVPR 2020论文《ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks》图1展示完整架构[^2] 2. **GitHub仓库**:开源实现如<https://github.com/BangguWu/ECANet>中的README文档 3. **学术博客**:机器之心等平台的技术解析文章常包含架构示意图 ```python # PyTorch实现示例 class ECALayer(nn.Module): def __init__(self, channels, gamma=2, b=1): super(ECALayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=self.get_kernel(channels, gamma, b), padding=(k//2), bias=False) self.sigmoid = nn.Sigmoid() def get_kernel(self, C, gamma, b): k = int(abs((math.log2(C) + b) / gamma)) return k if k % 2 else k + 1 def forward(self, x): y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)) y = y.transpose(-1, -2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值