机器学习(6) -- 支持向量机

6.1 间隔与支持向量

优化

6.2 对偶问题

对上式使用拉格朗日乘子法可得其对偶问题

分别对我w,b求偏导

代入L(w,b,α),消去w,b,即得

----------1式

求解α,代入模型

上述过程满足KKT条件:

这个是拉格朗日乘子

约束条件

这个是拉格朗日乘子

 

求解1式,SMO算法

SMO算法基本思路是先固定之外的所有参数,然后求上的极值。由于存在约束 ,于是每次选择两个变量 ,并固定其他参数,参数初始化后,SMO不断执行如下两步:

选取一对需要更新的变量

固定以外的参数,求解1式获得更新后的

直观看,KKT条件违背的程度越大,则变量更新后可能导致的目标函数值减幅越大。于是,SMO先选取违背KKT 条件程度最大的变量。

SMO采用了启发式:使选取的两变量所对应样本之间的间隔最大。直观解释是这样的两个变量有很大差别,与对两个相似的变量进行更新相比,对他们进行更新会带给目标函数值更大的变化

6.3 核函数

原始样本空间不存在能正确划分两类样本的超平面,如异或问题。

于是将原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分。

如果原始空间是有限维,即属性数有限,那么一定存在一个高维特征空间使样本可分。

 

于是,划分超平面对应的模型为

 

优化目标

 

对偶问题

 

核函数:

 

替换,求解:

 

只要一个对称函数所对应的核矩阵半正定,它就能作为核函数使用。对于一个半正定 核矩阵,总能找到一个与之对应的映射φ。也就是,任何一个核函数都隐式地定义了一个称为“ 再生核希尔伯特空间”的特征空间。

 

若K1,K2是核函数,则γ1K1+γ2K2,,K(x,z)=g(x)K1(x,z)g(z) 也是核函数

6.4 软间隔与正则化

允许支持向量机在样本上出错

于是,优化目标写为:

C无穷大时迫使所有样本满足约束,当C取有限值时,允许一些样本不满足约束

数学性质不好,于是用其他函数替代 , 称为替代损失

hinge损失

引入松弛变量

 

拉格朗日乘子法

 

通过采用hinge损失扔保持了稀疏性

使用对率损失几乎得到了对率回归模型,两者优化目标相近,性能也相当。

对率回归输出概率,支持向量机不具备概率意义

对率回归能直接应用于多分类任务,支持向量机需要推广

是光滑递减函数,不能导出类似支持向量的概念,因此对率回归的解依赖更多样本,预测开销大

 

优化目标一般形式:

---------2式

Ω(f):结构风险,描述模型f的某些性质

:经验风险,描述模型与训练数据的契合程度

C:对二者折中

 

从经验风险最小化角度看,Ω(f)表述了我们希望获得具有何种性质的模型(例如希望获得复杂度较小的模型),另一方面,该信息有助于削减假设空间,从而降低了最小化训练误差的过拟合风险,从这个角度说,2式称为“正则化问题”,Ω(f)为正则化项,C为正则化常数。

 

正则化可理解为一种“罚函数法”,即对不希望得到的结果施以惩罚,从而使得优化过程趋向于希望目标。从贝叶斯估计角度来看,正则化项可以认为是提供了模型的先验概率。

 

6.5 支持向量回归SVR

传统回归基于模型f(x)与真实输出y之间的差别来计算损失,当且仅当f(x)与y完全相同时损失才为0。

支持向量回归假设我们能容忍f(x)与y之间最多有ε的偏差,即仅当f(x)与Y之间的差别绝对值大于ε时才计算损失,这相当于以ε为中心,构建了一个宽度为2ε的间隔带,若样本落入此带,则认为是被预测正确的

于是

引入松弛变量

拉格朗日函数

 

对偶问题

解形如

仅当(xi,yi)不落入ε间隔带中,相 应的 才能取非零值。

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值