逻辑【联言选言】

文章阐述了联言(逻辑运算符“∧”)和选言(逻辑运算符“∨”)的概念,以及它们在复合命题中的作用。联言表示所有命题必须同时为真,选言表示只需一个命题为真。通过举例说明了它们在实际问题中的应用,并提出一个逻辑推理题,解析了如何根据给定的命题判断其他命题的成立情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

联言和选言都是将两个或多个命题连接在一起形成复合命题的方式。

联言使用逻辑运算符“∧”表示,意为“且”,表示联合两个或多个命题时,只有当所有命题都为真时,联合命题才为真。例如,命题“今天是周末 ∧ 天气晴朗”表示的是只有当今天是周末且天气晴朗时,该命题才为真。

选言使用逻辑运算符“∨”表示,意为“或”,表示联合两个或多个命题时,只要有一个命题为真,联合命题就为真。例如,命题“明天会下雨 ∨ 明天会有风”表示的是只要明天会下雨或者明天会有风,该命题就为真。

在实际应用中,联言和选言经常被用于描述复杂的情况,例如一个系统的多个条件同时成立时才能发生某种事件,或者某个变量的值只有在满足多个条件中的任意一个时才会改变。了解和掌握联言和选言的概念和运算规则,对于深入理解逻辑推理和判断思维具有重要的意义

假设有三个命题,P、Q、R,已知“如果 P 成立,则 Q 成立;如果 Q 不成立,则 R 不成立”,则下列哪些命题是一定成立的?
a. P 不成立;
b. Q 成立;
c. R 不成立;
d. P 成立且 R 不成立;
e. P 不成立且 Q 成立。


根据题目,我们可以列出如下命题:

  • 如果 P 成立,则 Q 成立:P→Q
  • 如果 Q 不成立,则 R 不成立:Q→R

我们需要判断哪些命题一定成立。对于每一个选项,我们需要判断它们是否一定成立。

a. P 不成立:不能确定,因为不知道 P 是否成立。
b. Q 成立:不能确定,因为不知道 P 是否成立。
c. R 不成立:不能确定,因为不知道 P 和 Q 的真假情况。
d. P 成立且 R 不成立:不能确定,因为不知道 P 和 Q 的真假情况。
e. P 不成立且 Q 成立:成立。因为如果 P 不成立,根据 P→Q,Q 一定成立。

因此,选项 e 是一定成立的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_43585822

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值