Markdown 数学公式符号
在两个
$
中间的是行内式
$$
$$
中间的是独立式
因为{}
代表组合(即特殊含义),所以单独使用时需要在前面添加\
转义
1.希腊字母
大写 | 小写 | 中文名 | 英文 | 英语音标注音 | 大写Markdown | 小写Markdown | 意义 |
---|---|---|---|---|---|---|---|
A AA | α \alphaα | 阿尔法 | Alpha | /'ælfə/ | A | \alpha | 角度、系数、角加速度、第一个、电离度、转化率 |
B BB | β \betaβ | 贝塔/毕塔 | Beta | /'bi:tə/ 或 /'beɪtə/ | B | \beta | 磁通系数、角度、系数 |
Γ \GammaΓ | γ \gammaγ | 伽玛/甘玛 | Gamma | /'gæmə/ | \Gamma | \gamma | 电导系数(小写)、角度、比热容比 |
Δ \DeltaΔ | δ \deltaδ | 德尔塔/岱欧塔 | Delta | /'deltə/ | \Delta | \delta | 变化量、焓变、熵变、屈光度、变动、方程判别式(大写)、允许误差(小写,统计学) |
E EE | ϵ \epsilonϵ/ε \varepsilonε | 伊普西隆/埃普斯棱 | Epsilon | /'epsɪlɒn/ | E | \epsilon \varepsilon | 对数之基数、介电常数 |
Z ZZ | ζ \zetaζ | 泽塔/Z塔 | Zeta | /'zi:tə/ | Z | \zeta | 系数、方位角、阻抗、相对粘度、原子序数 |
H HH | η \etaη | 伊塔/诶塔 | Eta | /'i:tə/ | H | \eta | 迟滞系数;机械效率(小写) |
Θ \ThetaΘ | θ \thetaθ | 西塔/非塔 | Theta | /'θi:tə/ | \Theta | \theta | 温度、相位角 |
I II | ι \iotaι | 约塔/埃欧塔 | Iota | /aɪ’əʊtə/ | I | \iota | 微小、一点儿 |
K KK | κ \kappaκ | 卡帕/堪帕 | Kappa | /'kæpə/ | K | \kappa | 介质常数、绝热指数 |
Λ \LambdaΛ | λ \lambdaλ | 兰姆达/拉姆达 | Lambda | /'læmdə/ | \Lambda | \lambda | 波长(小写)、体积、导热系数 |
M MM | μ \muμ | 米欧/谬/穆 | Mu | /mju:/ | M | \mu | 磁导系数、微(百万分之一)、动摩擦系(因)数、流体动力黏度、货币单位、放大因数(小写)、正态分布中的位置参数(小写) |
N NN | ν \nuν | 拗/奴/纽 | Nu | /nju:/ | N | \nu | 磁阻系数、流体运动粘度、光波频率、化学计量数 |
Ξ \XiΞ | ξ \xiξ | 克西/可西/赛 | Xi | 希腊 /ksi/ 英美 /ˈzaɪ/ 或 /ˈsaɪ/ | \Xi | \xi | 随机变量、(小)区间内的一个未知特定值 |
O OO | ο \omicronο | 欧米克隆/欧 (阿~) 米可荣 | Omicron | /əuˈmaikrən/ 或 /ˈɑmɪˌkrɑn/ | O | \omicron | 高阶无穷小函数 |
Π \PiΠ | π \piπ | 派 | Pi | /paɪ/ | \Pi | \pi | 圆周率=圆周÷直径=3.1416、π(n)表示不大于n的质数个数 |
P PP | ρ \rhoρ | 柔/若 | Rho | /rəʊ/ | P | \rho | 密度;电阻系数(小写)、柱坐标和极坐标中的极径 |
Σ \SigmaΣ | σ \sigmaσ | 西格玛 | Sigma | /'sɪɡmə/ | \Sigma | \sigma | 总和(大写),表面密度、跨导(小写)、正应力 |
T TT | τ \tauτ | 陶/套/驼 | Tau | /tɔ:/ 或 /taʊ/ | T | \tau | 时间常数、切应力、2π(两倍圆周率) |
Υ \UpsilonΥ | υ \upsilonυ | 玉普西隆/宇 (阿~) 普西龙 | Upsilon | /ˈipsɪlon/ 或 /ˈʌpsɪlɒn/ | \Upsilon | \upsilon | 位移 |
Φ \PhiΦ | ϕ \phiϕ φ \varphiφ | 斐/弗爱/弗忆 | Phi | /faɪ/ | \Phi | \phi \varphi | 磁通量、角、透镜焦度、热流量、电势、空集(大写) |
X XX | χ \chiχ | 凯/柯义 | Chi | /kaɪ/ | X | \chi | 统计学中有卡方(χ 2 χ^2χ2)分布 |
Ψ \PsiΨ | ψ \psiψ | 赛/普赛/普西 | Psi | /psaɪ/ | \Psi | \psi | 角速;介质电通量(静电力线);角 ;波(ψ)函数 |
Ω \OmegaΩ | ω \omegaω | 奥米伽/欧米伽/欧枚嘎 | Omega | /'əʊmɪɡə/ 或 /oʊ’meɡə/ | \Omega | \omega | 欧姆、电阻(大写)、角速度(小写)、交流电的电角度、化学中的质量分数、角 |
\alpha \Alpha \\
\beta \\
\omega \\
\psi \\
\sigma \Sigma \\
\mathbb{A}
α A β ω ψ σ Σ A \alpha \Alpha \\ \beta \\ \omega \\ \psi \\ \sigma \Sigma \\ \mathbb{A} αAβωψσΣA
2.上下标
x^2+y_1=x^{x_1+y} \\
x^2+y_1=2
x 2 + y 1 = x x 1 + y x 2 + y 1 = 2 x^2+y_1=x^{x_1+y} \\ x^2+y_1=2 x2+y1=xx1+yx2+y1=2
3.括号
f(x,y)=x^2+y_2,x \epsilon[1,10],y \epsilon \{1,2,3 \} \\
\left.(\sqrt {1 \over 2} \right)
大括号加上\left \right即可,但是需要成对出现.
代表消除括号效果
f
(
x
,
y
)
=
x
2
+
y
2
,
x
ϵ
[
1
,
10
]
,
y
ϵ
{
1
,
2
,
3
}
(
1
2
)
f(x,y)=x^2+y_2,x \epsilon[1,10],y \epsilon \{1,2,3 \} \\ \left.(\sqrt {1 \over 2} \right)
f(x,y)=x2+y2,xϵ[1,10],yϵ{1,2,3}(21)
4.省略号
{1 \over 2},{1 \over 3},\ldots,{1 \over n} \\
{1 \over 2},{1 \over 3},\cdots,{1 \over n}
1 2 , 1 3 , … , 1 n 1 2 , 1 3 , ⋯ , 1 n {1 \over 2},{1 \over 3},\ldots,{1 \over n} \\ {1 \over 2},{1 \over 3},\cdots,{1 \over n} 21,31,…,n121,31,⋯,n1
5.分数
\frac{1-x}{y+1}
x \over {x+1}
1 − x y + 1 \frac{1-x}{y+1} y+11−x
x x + 1 x \over {x+1} x+1x
6.开方
\sqrt[3]{9}
[]
代表次数,然后{}
干嘛的自己猜吧
9
3
\sqrt[3]{9}
39
7.向量
\vec a \\
\vec {ab}
a ⃗ a b ⃗ \vec a \\ \vec {ab} aab
8.极限
\lim_{n \rightarrow +\infty} \frac{1}{n}
lim n → + ∞ 1 n \lim_{n \rightarrow +\infty} \frac{1}{n} n→+∞limn1
9.求导
y \prime = n^{n-1}
y ′ = n n − 1 y \prime = n^{n-1} y′=nn−1
10.方程组
y: \begin{cases} x+y =1 \\
x-y=0 \end{cases}
y : { x + y = 1 x − y = 0 y: \begin{cases} x+y =1 \\ x-y=0 \end{cases} y:{x+y=1x−y=0
11.矩阵
A = \left[ \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end {matrix} \right]
A = [ 1 2 3 4 5 6 7 8 9 ] A = \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {matrix} \right] A= 147258369
横省略号:\cdots
竖省略号:\vdots
斜省略号:\ddots
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} \\
\end{bmatrix}
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
12.对数符合
前面加 \
即可
log
\log
log
lg \lg lg
ln \ln ln
13.数学符号
\not= \\
\approx \\
\leq \\
\geq \\
\times \\
\cdot \\
\pm \\
\div \\
\infty \\
\sum \\
\prod \\
\coprod \\
\uparrow\\
\downarrow \\
\leftarrow \\
\rightarrow \\
平均值 \downarrow \\
\overline{a+b+c}\\
≠ ≈ ≤ ≥ × ⋅ ± ÷ ∞ ∑ ∏ ∐ ↑ ↓ ← → 平均值 ↓ a + b + c ‾ \not= \\ \approx \\ \leq \\ \geq \\ \times \\ \cdot \\ \pm \\ \div \\ \infty \\ \sum \\ \prod \\ \coprod \\ \uparrow\\ \downarrow \\ \leftarrow \\ \rightarrow \\ 平均值 \downarrow \\ \overline{a+b+c}\\ =≈≤≥×⋅±÷∞∑∏∐↑↓←→平均值↓a+b+c
14.定积分
\int \\
\iint \\
\iiint \\
\oint \\
∫ ∬ ∭ ∮ \int \\ \iint \\ \iiint \\ \oint \\ ∫∬∭∮
15.三角函数
⊥ ∠ 3 0 ∘ sin cos tan cot sec csc \bot \\ \angle \\ 30^\circ\\ \sin \\ \cos \\ \tan \\ \cot \\ \sec \\ \csc \\ ⊥∠30∘sincostancotseccsc
16.集合
\emptyset \\
\in \\
\notin \\
\supset \\
\supseteq \\
\bigcap \\
\bigcup \\
\bigvee \\
\bigwedge \\
\ni
∅ ∈ ∉ ⊃ ⊇ ⋂ ⋃ ⋁ ⋀ ∋ \emptyset \\ \in \\ \notin \\ \supset \\ \supseteq \\ \bigcap \\ \bigcup \\ \bigvee \\ \bigwedge \\ \ni ∅∈∈/⊃⊇⋂⋃⋁⋀∋
17.示例
\theta_0 := \theta_0-\eta \sum^n_{i=1}(f_\theta(x^{(i)}-y^{(i)})) \\
\theta_1 := \theta_1-\eta \sum^n_{i=1}(f_\theta(x^{(i)}-y^{(i)}))
θ 0 : = θ 0 − η ∑ i = 1 n ( f θ ( x ( i ) − y ( i ) ) ) θ 1 : = θ 1 − η ∑ i = 1 n ( f θ ( x ( i ) − y ( i ) ) ) \theta_0 := \theta_0-\eta \sum^n_{i=1}(f_\theta(x^{(i)}-y^{(i)})) \\ \theta_1 := \theta_1-\eta \sum^n_{i=1}(f_\theta(x^{(i)}-y^{(i)})) θ0:=θ0−ηi=1∑n(fθ(x(i)−y(i)))θ1:=θ1−ηi=1∑n(fθ(x(i)−y(i)))
\frac{\partial u}{\partial \theta_0} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_0}
∂ u ∂ θ 0 = ∂ u ∂ v ⋅ ∂ v ∂ θ 0 \frac{\partial u}{\partial \theta_0} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_0} ∂θ0∂u=∂v∂u⋅∂θ0∂v
f_\theta(x) = \frac{1}{\exp(-\theta^T x)}
s i g m o i d 函数 f θ ( x ) = 1 exp ( − θ T x ) sigmoid函数\\ f_\theta(x) = \frac{1}{\exp(-\theta^T x)} sigmoid函数fθ(x)=exp(−θTx)1
正在看白话机器学习的数学,里面逻辑回归就会用到,下一篇博客就来写写学习笔记