卫星定轨的简要总结

在卫星导航定位系统中,用户想要获得自身的精确位置信息,是严重依赖卫星轨道和钟差数据的精准度的。因为用户定位是以卫星为参考点的,卫星位置和钟差的精确确定是用户精确位置确定的前提条件。
现在卫星位置和钟差(指卫星时间和系统时的钟差)的确定是依靠分布在世界各地的地面监测站的接收机接收卫星信号,数据汇总到数据中心(主控站),经过主控站的统一解算,计算出卫星的轨道位置和钟差,经过注入站上注给卫星,然后经过卫星播发广播星历,把卫星轨道位置和钟差信息传递给用户的。用户通过接收卫星信号,解算出卫星位置和钟差,以及测量获得伪距、载波相位、多普勒信息,就可以用最小二乘或者卡尔曼滤波解算用户位置信息了。
以上就是用户确定自身位置的一个过程。这里想说的是卫星定轨问题,就是依赖全球分布的地面监测网和地面数据中心解算卫星位置的事情。可以看到,目前GNSS系统卫星定轨依赖地面站,如果地面站故障,就会影响卫星定轨精度。极端条件下,地面站完全故障,不再给卫星上注星历信息(含卫星位置和钟差信息),那么卫星只能依靠最近一次上注的星历信息和轨道预测、钟差预测算法,预测自己的轨道位置和钟差信息了。短时间预测精度还可以,长期预测精度下降。卫星轨道位置和钟差精度下降,直接影响用户位置解算精度,使用户位置解算精度下降。
看来依赖地面站给卫星定轨是存在风险的。于是有人提出了卫星自主定轨:利用卫星星间测距信息,通过卫星间通信和星上计算能力,卫星自己解算自己的轨道位置和钟差信息。这个想法很好,摆脱了对地面站的依赖,但是理论上位于地球上方2万公里的卫星,由于这个位置的卫星受力情况决定了卫星不能完全自主定轨,会存在星座整体旋转和时间基准的漂移问题。退而求其次,不能卫星完全自主定轨,就找个外协吧。于是有人提出锚固站概念:锚固站是己知位置的地面接收机或(虚拟)发射器。锚固站位置已知,时间同步于系统时,可以为卫星提供一个时空基准。在锚固站时空基准信息上注给卫星后,卫星就可以通过星间测距和数据交换,在卫星计算机的帮助下解算卫星的轨道位置和钟差信息了。由于地面监测网已经建立,而且遍布全世界,对卫星完成全弧段观测,几何构型很好,观测精度高。所以在和平、安宁的时间,卫星定轨还是依靠地面站定轨;也可以地面站和卫星联合定轨。在地面站失去工作能力的极端条件,就使用锚固站和卫星自主定轨;在锚固站也失去工作能力的更极端条件下,卫星只能完全自主定轨,仅仅利用最近的星历信息和星间测距信息进行定轨,不过定轨精度随时间的加长而下降。
要实现完全的卫星自主定轨,也是可以的,只是卫星不能在2万公里的地面上方了,要去更远的地方,受力条件不同的地方,地月卫星三体运动的平动点位置就是一个可行的位置,在平动点,卫星受力不同于2万公里的MEO卫星轨道,卫星可以自主定轨。这还在研究阶段,还没有实际应用。
以上就是对卫星几种定轨情况的简要总结。
个人感想:其实,现实中哪有完美啊,更多的是结合需求和实际情况的限制范围,一步一步尽可能满足需求吧,很少甚至没有完全的满足需求情况。就像这卫星定轨,发现不能完全依赖地面,那就想摆脱地面实现卫星自主定轨,然而又从理论上证明完全依赖卫星自主定轨是不可行的,那就退一步利用地面的锚固站提供一个时空基准给卫星吧,然后在锚固站的支持下,卫星自主定轨。再一想,地面监测网已经建立,而且监测效果好,定轨精度高。那我们还是在可以使用地面监测网的情况下,优先使用地面定轨吧;地面站失效情况下再依靠自主定轨,加上锚固站解决星座旋转问题;锚固站也失效的情况下,不得不使用卫星完全自主定轨了,哪怕长期自主定轨精度低,也不得不这样做,直至精度过低定位失败吧。好在除了卫星定位,我们还有惯导,地磁,重力,天文等其他导航方式。关上了一扇门,还好有扇窗。

### 星座分布式卡尔曼滤波在中的实现方法 #### 背景介绍 星座分布式卡尔曼滤波是一种结合多颗卫星观测数据的技术,用于提高道确的精度和效率。这种方法通过融合来自多个传感器的数据,能够在复杂环境下提供更可靠的道估计结果。其核心思想是在传统卡尔曼滤波的基础上扩展到多节点协作模式,使得每颗卫星都可以作为独立节点参与计算。 #### 原理概述 卡尔曼滤波的核心在于动态系统的建模以及噪声统计特性的假设。对于道确问题,通常需要考虑以下几个方面: 1. **状态向量义** 状态向量一般包括卫星的位置、速度以及其他可能的状态变量(如加速度)。例如,三维空间下的位置 \( \mathbf{r}=[x, y, z]^T \) 和速度 \( \mathbf{v}=[\dot{x}, \dot{y}, \dot{z}]^T \),构成一个六维状态向量 \( \mathbf{x}=[\mathbf{r}; \mathbf{v}] \)[^1]。 2. **动力学方程构建** 动力学方程描述了状态随时间的变化规律。对于地球道上的卫星,主要受到引力场的影响,同时还需考虑摄动因素(如大气阻力、太阳辐射压力等)。这些可以通过牛顿第二律表示为: \[ \ddot{\mathbf{r}} = -\frac{\mu}{|\mathbf{r}|^3}\mathbf{r} + \mathbf{f}_{perturb} \] 其中 \( \mu \) 是地球引力常数,\( \mathbf{f}_{perturb} \) 表示各种扰动力项。 3. **测量模型设计** 测量模型将实际观测值映射至状态空间。常见的观测类型有伪距、载波相位差分(RTK)、角度测量等。例如,在 RTK 技术中,“站间星间双差”可以有效减少电离层延迟和其他系统误差的影响[^2]。 4. **分布式架构特点** 在星座分布式的框架下,各子滤波器分别运行于不同卫星上,并通过通信链路交换局部估计信息。最终由中心处理器汇总全局最优解或者采用去中心化的方式完成协同更新过程。 #### MATLAB 实现思路 以下是基于上述理论的一个简化版 MATLAB 实现流程示意代码: ```matlab % 初始化参数 dt = 0.1; % 时间步长 (秒) Q = eye(6)*0.01; % 过程噪声协方差矩阵 R = diag([1e-3, 1e-3]); % 测量噪声协方差矩阵 A = [eye(3), dt*eye(3); zeros(3), eye(3)]; % 系统转移矩阵 H = [eye(3), zeros(3)]; % 观测矩阵 % 初始条件设 state_true = randn(6,1); % 真实初始状态 P_priori = eye(6); % 先验误差协方差初始化 num_steps = 100; for k=1:num_steps % 预测阶段 state_estimated = A * state_estimated; P_priori = A * P_priori * A' + Q; % 更新阶段 measurement = H * state_true + sqrt(R)*randn(size(H,1),1); K_gain = P_priori * H' / (H * P_priori * H' + R); state_estimated = state_estimated + K_gain*(measurement - H*state_estimated); P_posteriori = (eye(size(A)) - K_gain*H)*P_priori; end ``` 此脚本仅展示了一个简单的线性情况;真实场景往往涉及复杂的非线性和多源异构数据处理。 #### 应用领域与发展前景 随着 GNSS 导航网络规模扩大和技术进步,星座分布式卡尔曼滤波将在以下方向展现更大潜力: - 提升低小型卫星群的整体性能; - 支持深空探测任务中的自主导航需求; - 结合 AI 方法进一步优化算法适应能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值