基于星载GNSS的低轨卫星精密定轨研究论文整理笔记

整理

论文完成的工作

  1. 低轨卫星精密定轨方法研究

  2. 星载GNSS接收机天线PCO和PCV的估计与建模

  3. 定轨中的卫星姿态问题研究

  4. GPS卫星钟差加密算法研究

  5. 超低超大型航天器的精密定轨研究

  6. 星载BDS/GPS数据联合或单独定轨研究

星载GNSS定轨基础理论

基本思想

基于惯性系下的牛顿运动方程,利用卫星的观测资料以及所收到的设动力,简历卫星的运动方程和观测方程,然后通过数值积分方法求解出不同时刻的理论值,最后利用最小二乘对理论值和观测值之间的不符值进行平差,求解出卫星的初始轨道根数以及动力学参数等。

摄动力模型

摄动力总体上可以分为两种形式:

  1. 一种存在有位函数,并且不会使运行的卫星能量损失(保守力)

  2. 非保守力,他们通常具有随机性,不能用某一特定的通用数学模型准确表示,往往与卫星的形体情况有关,只能用相对于某一卫星特征的单独经验模型来表示。

保守力摄动

  • 地球引力摄动

包括两部分:

  1. 地球中心引力摄动

  2. 地球非球形引力摄动

  • N体摄动

  • 地球潮汐摄动

产生地球潮汐摄动的原因:

 地球并非一个刚体,而近似为一个弹性体。由于日月等天体对地球的引力,再加上地球自转的不均匀性,地球就会产生弹性形变。前者称为潮汐形变,后者称为自转形变。

  • 相对论摄动

非保守力摄动

通常要考虑的非保守力主要包括:

  1. 大气阻力摄动

  2. 太阳辐射压摄动

  3. 地球辐射压摄动

  • 大气阻力摄动

“大气阻力对于低轨卫星的主要摄动力方向与卫星运动速度相反, 这就使得低轨卫星的速度不断减小,卫星高度也会不断降低。” (李, p. 20)

  • 太阳辐射压摄动

“卫星受到太阳光的照射,卫星表面就会吸收或者反射光子而产生一个微小 作用力,称为太阳辐射压,” (李, p. 21)

其相关决定因素主要有三点:

  1. 卫星与太阳的位置关系

  2. 卫星面质比

  3. 表面特性

  • 地球辐射压摄动

“地球在受到太阳辐射时,除了自身会吸收一部分能量外,地面或海面也将 反射一部分能量进入太空。” (李, p. 21)

将低轨卫星将收到的地球反照压和红外辐射压统称为地球辐射压。

地球反射辐射压的影响因素:

  1. 太阳的位置

  2. 地球反射面

  3. 红外辐射压

经验力摄动

由于卫星受到的非保守力不能完全精确的进行建模,存在着模型误差,且有些摄动力无法用模型表示,这些影响都对卫星精密定轨产生较大的影响。用经验里模型来消除或者减弱未被模型化的或者建模不精确的摄动力的影响。

主要包括:

  1. 经验切向摄动

  2. RTN经验摄动

  3. 伪随机脉冲摄动

  • 伪随机脉冲摄动

“对于某特定历元、在其预定方向上设置一个瞬时的速度变化,这个瞬时速 度变化称为伪随机脉冲。” (李, p. 22)

优点:“该方法的最大优点是:这些参数对初始参数的偏导数,可以很方便地由已有参考轨道及相应卫星位置和速度对初始参数的偏导数线性组合而成,能非常简便地在精密定轨中实现,且不增加积分器的维数,一次积分可以任意改变脉冲加速度的时间间隔。” (李, p. 22)

观测模型

几种线性组合

  • 无电离层组合

  • 电离层残差组合

  • 宽巷线性组合

  • M-W线性组合

主要误差源及修正

  • 与卫星有关的误差及其改正

 利用LEO卫星的星载GNSS观测数据进行定轨时,通常采用的是两步法,即先固定GNSS卫星的轨道和钟差,然后反解出LEO卫星的轨道。

  • 与信号传播有关的误差及其改正

 低轨卫星的轨道高度比对流层所在的高度高,所以不受对流层延迟的影响,而多路径效应也因为对低轨卫星天线高度的设计而大大减小,所以电离层延迟误差就成为了信号传播过程中一个主要的误差源。

  • 与星载接收机有关的误差及其改正

  1. 接收机钟误差

  2. 接收机天线相位中心偏差

轨道估值

卫星定轨是通过行在观测资料建立的观测方程和通过卫星在摄动力影响下建立的运动方程积分得到状态转移矩阵实现,从而将定轨问题转化对卫星的初始状态进行改进的迭代过程,并由最小二乘方法进行参数估计。

运动方程

变分方程

插一句,变分方程和运动方程都有什么用?是干什么的?都包含了哪些信息?

什么是变分方程和运动方程?他们的组成以及他们都有什么用?

数值积分

  1. 解析法

  2. 数值法

 解析法是对所有作用在卫星上的力建立数学表达式,并给出封闭形式的积分解,该方法可以明确的研究摄动力与轨道根数之间的关系,可以确定卫星的运动规律,但它给出的解过于复杂,而且有些摄动力又难以精确地模型化,所以不能适应现代高精度的定轨要求。

 数值法可以比较完善地估计卫星受到的各种摄动力,而且把这些摄动力作为一个整体来处理,简单易行、精度高而且具有普遍适用能力。

运动方程积分

“Collocation积分法就是在已知初始状态向量的基础上,在积分区间内求得一个Q阶多项式,通过这个多项式就可以得到积分区间内任意时刻的卫星位置与速度,当然也可以通过这个多项式进行轨道外推。” (李, p. 31)

Collocation轨道积分方法如下:

变分方程积分

低轨卫星精密定轨方法研究

定轨方法介绍

  1. 几何学定轨

  2. 运动学定轨

  3. 动力学定轨

  4. 简化动力学定轨

几何学定轨

低轨卫星上搭载的GNSS接收机,可以接收到导航卫星发出的信号,当某一时刻接收到的卫星个数达到匴颗以上(包含4颗)时,就可以利用接收到的伪距观测值对其进行空中后方交会,从而确定出低轨卫星的位置。

其误差在于:伪距单点定位的精度 GNSS卫星的空间几何构型 信号的连续性和稳定性

运动学定轨

“运动学定轨是星载GNSS定 轨 技 术 特 有 的 方 法, 它 主 要 是 基 于 大 量 的 连 续 的卫星跟踪观测,根据观测量和卫星轨道之间的几何关系,进行未知参数估计 (模糊度参数、卫星钟差参数等),不需要卫星的动力学模型及力学参数的解算, 但该方法给出的轨道在有些历元会存在不连续的现象,主要是由于观测数据较少或者缺失,观测数据质量较差,卫星几何构型不合理造成的。” (李, p. 34)

动力学定轨

“动力学定轨是采用星载GNSS伪距和相位观测值以及相应的力学模型确定卫星的初始轨道参数和其他动力学参数的过程,它可以通过轨道积分的方式得到连续的卫星轨道,定轨精度较高,同时也可以对轨道进行外推。它的不足之处在于需要考虑比较完整的摄动力,要求力学模型准确,但目前为止,并不是所有的摄动力都能准确的模型化,摄动力学模型中也存在着相应的模型误差。” (李, p. 34)

简化动力学定轨

“该方法是将动力学法和几何法联合起来进行综合处理,同时顾及低轨卫星的动力学状态信息以及几何法定轨的信息,通过 适当调整这两类信息的权,利用伪随机脉冲参数来吸收模型误差以及没有精确模型化的摄动力的影响,从而达到改善轨道精度的目的。” (李, p. 35)

什么是伪随机脉冲参数?

“在简化动力学定轨中,将轨道根数、部分动力参数以及其他相关参数同时求解。未知参数包括六个初始轨道根数、九个经验加速度参数以及每隔一段时间设置的三个伪随机脉冲参数。” (李, p. 35)

精度评估

轨道重叠

轨道衔接点位置差异

轨道互比

激光验核

LEO星载GPS定轨研究

定轨方案及策略

简化动力学定轨的精度较高

接收机天线PCO/PCV建模研究

“精密定轨过程中应对天线相位中心进行在轨校正,如果只 采用地面标定值,容易在观测值中引入与信号入射方向相关的误差从而影响定 轨结果。为削弱相位观测值中可能出现的系统误差,可将整个天线空间按一定 的高度角和方位角划分格网,根据残差的分布进行相位中心的估计。” (李, p. 54)

PCO估计原理

天线参考点(Antenna Reference Point):“接收机天线上的参考点是 由用户自己定义的,一般选在天线旋转轴与前置放大器底部或者天线旋转轴与 天线顶端的交点上。” (李, p. 54)

瞬时相位中心(Instantaneous Antenna Phase Center)

平均相位中心(Mean Antenna Phase Center):“平均相位中心是不同方向卫星信号相位中心的加权平均值, 瞬时相位中心是卫星信号在某一时刻到达接收机处的位置。” (李, p. 54)

天线参考点和平均相位中心不重合,它们之间的这项偏差就是天线相位中心偏差(PCO)

“由于天线制造工艺等因 素,升卐卓信号中心会发生波动,瞬时相位中心和平均相位中心的偏差即为天线相位中心变化(PCV)” (李, p. 54)

“通常的做法是在精密定轨过程中,将卐千协参数作为未知参数引入观测方程,与 其他参数一起解算。” (李, p. 55)

PCV建模原理

通常的做法是:一:在精密定轨过程中将PCV参数作为未知参数,与其他定轨参数一起解算;二:利用卫星精密定轨的相位残差值对PCV进行建模。

文中使用的方法是对PCV进行建模的方式,具体做法如下所示:

其中,为了保证0°和360°边界处的PCV值相等,本文的做法是取相同颜色区域的残差值的均值作为边界处网点的PCV值。

PCV图像的绘制

分析所绘制的图像可知:

1.空间分布成条带状,这是因为残差法是将定轨残差按照高度角和方位角划分格网,将落入相应格网区间的残差取平均值作为该格网点的PCV值,因此相邻格网区间的PCV估计值更为相似。

2.观察数据可知,在低方位角处变化较大,这主要是因为卫星在低高度角时,信号衰减严重,而且多路径效应影响也更加明显,导致观测数据质量较差。

3.PCV值的变化也呈现出与接收信号的入射方位角和高度角具有较强的相关性。

以上给我的启发:

高度角和方位角对PCV的变化具有较强的相关性,我是否也可以搞出一个模型,其自变量为高度角和方位角。(PCV建模)(but没有合适的建模方法)

卫星姿态建模研究

“卫星的姿态模型是对卫星实际运行姿态的近似和数学化描述,影响转换矩 阵 R2 (ψ )与 轨 道 角(Ω)和 β角( β′ )的 关 系。” (李, p. 65)

得到的结论如下:

“由此可见,当采用外部姿态文件时,可以获得较好的定轨 结果;当没有姿态文件时,利用卫星的姿态模型进行定轨,同样可以得到精度 较高的轨道,精度较使用姿态文件时的稍差。因此,在实际工程应用中,优先 使 用 提 供 的 姿 态 文 件; 当 没 有 时 可 根 据 卫 星 的 轨 道 特 性 建 立 相 应 的 姿 态 模 型, 以达到高精度定轨的目的。” (李, p. 68)

在有条件的情况下,应该优先使用姿态文件;当没有姿态文件时,可以根据卫星的轨道特性来建立相应的姿态模型。

GPS卫星钟差加密研究

卫星钟差加密算法

(1)“在获取低频钟差数据处理的基础上, 固定精密轨道,地球自转参数、测站坐标等参数,采用精密单点定位的方法估 计高采样率的卫星钟差,但该方法仍然要估计大量的模糊度参数,随着测站数 目的增多,需要估计的参数仍然较多,计算效率也因此变得缓慢” (李, p. 70)

(2)在获取低频钟差数据处理的基础上,通过相位观测值历元间差分的方式获取卫星钟差在历元间的变化,并通过在低频采样点上增加钟差约束的方式计算绝对钟差,该方法笑出了模糊度参数,计算效率大大提高。

其方法的原理如下:

加密钟差精度分析

文中使用的方法:

先计算基准钟之间的偏差,然后将其他卫星的钟差都扣除掉次偏差,最后再与IGS钟差进行比较,给出精度统计结果。具体步骤如下:

大型航天器精密定轨研究

星载GPS、BDS联合定轨研究

星地一体化联合定轨研究

星地联合定轨原理及流程

联合定轨数学模型


(李, p. 103)


(李, p. 104)

### starRC、LEF 和 DEF 文件的 EDA 工具使用教程 #### 关于 starRC 的使用说明 starRC 是由 Synopsys 开发的一款用于寄生参数提取 (PEX) 的工具,在 detail routing 完成之后被调用,以提供精确的电阻电容延迟分析数据[^2]。该工具能够处理复杂的多层互连结构并支持多种工艺节点。 对于 starRC 的具体操作指南,通常可以从官方文档获取最权威的信息。访问 Synopsys 官方网站的技术资源页面,可以找到最新的产品手册以及应用笔记等资料。此外,还可以通过在线帮助系统获得交互式的指导和支持服务。 #### LEF 和 DEF 文件格式解析及其在 Cadence 中的应用 LEF(Library Exchange Format)和 DEF(Design Exchange Format)是两种广泛应用于集成电路布局布线阶段的标准文件格式之一[^3]。前者主要用于描述标准单元库中的元件几何形状;后者则记录了整个芯片版图的设计信息,包括但不限于各个模块的位置关系、网络连接情况等重要细节。 当涉及到这些文件类型的编辑或读取时,Cadence 提供了一系列强大的平台级解决方案,比如 Virtuoso Layout Editor 就可以直接打开并修改 LEF/DEF 格式的项目工程。为了更好地理解和运用这两种文件格式,建议参阅 Cadence 发布的相关培训材料或是参加其举办的专项课程学习活动。 ```bash # 示例命令:查看 LEF 或 DEF 文件内容 cat my_design.lef cat my_design.def ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学测绘的小杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值