kafka抽取json数据写入clickhouse

下面是一个从 Kafka 读取 JSON 数据并将其写入本地文件的 PyFlink 脚本: ```python from pyflink.datastream import StreamExecutionEnvironment from pyflink.table import StreamTableEnvironment, DataTypes from pyflink.table.descriptors import Kafka, FileSystem, Json from pyflink.table.udf import udf # 定义函数用于将 JSON 字符串转换成 Python 字典 @udf(input_types=[DataTypes.STRING()], result_type=DataTypes.MAP(DataTypes.STRING(), DataTypes.STRING())) def json_to_map(s): import json return json.loads(s) # 创建 StreamExecutionEnvironment 和 StreamTableEnvironment env = StreamExecutionEnvironment.get_execution_environment() env.set_parallelism(1) t_env = StreamTableEnvironment.create(env) # 定义 Kafka 和 FileSystem 的连接信息 kafka_props = { "bootstrap.servers": "localhost:9092", "group.id": "test-group" } fs_props = { "fs.default-scheme": "file:///", "storage.path": "/path/to/output" } # 注册 Kafka 和 FileSystem t_env \ .connect( \ Kafka() .version("universal") .topic("test-topic") .start_from_earliest() .properties(kafka_props) ) \ .with_format( \ Json() .json_schema("{type: 'object', properties: {id: {type: 'string'}, name: {type: 'string'}}}") .fail_on_missing_field(True) .ignore_parse_errors(True) ) \ .with_schema( \ DataTypes.ROW([DataTypes.FIELD("id", DataTypes.STRING()), DataTypes.FIELD("name", DataTypes.STRING())]) ) \ .register_table_source("kafka_source") t_env \ .connect( \ FileSystem() .path("/path/to/output") .with_format(Json()) .with_schema( \ DataTypes.ROW([DataTypes.FIELD("id", DataTypes.STRING()), DataTypes.FIELD("name", DataTypes.STRING())]) ) ) \ .create_temporary_table("fs_sink") # 从 Kafka 读取数据,转换成 Python 字典后写入本地文件 t_env \ .from_path("kafka_source") \ .select(json_to_map("value").alias("data")) \ .select("data['id'] as id, data['name'] as name") \ .insert_into("fs_sink") # 执行任务 t_env.execute("kafka_to_local_file") ``` 在脚本中,我们首先定义了一个 UDF 函数 `json_to_map`,用于将 JSON 字符串转换成 Python 字典。接着,我们创建了 StreamExecutionEnvironment 和 StreamTableEnvironment,并设置了并行度为 1。 然后,我们定义了 Kafka 和 FileSystem 的连接信息,以及 JSON 格式的数据格式。我们使用 `register_table_source` 方法将 Kafka 注册到 TableEnvironment 中,使用 `create_temporary_table` 方法创建一个临时的 FileSystem 。 最后,我们从 Kafka 中读取数据,并将其转换成 Python 字典后写入本地文件。我们使用 `insert_into` 方法将数据插入到 FileSystem 中,使用 `execute` 方法执行任务。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值