【NTN 卫星通信】聊聊低轨卫星通信

NTN,非对地网络

一般指卫星通信系统,最近两年开始比较热门的一个通讯系统。包括国外和国内都在推进研发中。
国外的包括马斯克的StarLink、美国另外一个公司的OneWeb等都在推动低轨卫星网络的发展。
国内最近2年也在研发中,一些大型的卫星通信研究所,大型的通信设备供应商等都在加紧研发,估计2-3年后会开始商用。

NTN的几个大的形态

1、从卫星轨道的高度看,可以分为高轨卫星,地球同步卫星和低轨卫星,高轨卫星距离地面较远,信号传输时延较长;低轨卫星距离地面相对较近,信号的传输时延相对较短,当前StarLink等主要在发展低轨卫星系统。
2、从卫星在通信系统中的作用看,可以分为透明模式和再生模式。
透明模式:简单的讲就是卫星上的设备只是一个类似的中继器,做一些波束的控制、放大、频率转换等操作,不会做信号的调制解调、调度资源分配等处理。
再生模式:卫星上的设备包括了调制解调模块、资源调度等处理,简单来讲就是基站的主要处理部分都在卫星上。再生模式相对透传模式来讲是有一些优势的,这个后面单独起一篇文章讲。

NTN的竞争态势

1、当前Starlink已经在全球商用,所以整体最有优势的国家当然是美国,最有优势的企业是StarLink,据说现在StarLink使用的是透传模式的低轨卫星,细节待考证。
2、国内最近2年也在大力发展NTN,不过应该还没有商用,在低轨卫星通信上应该是落后的,个人估计落后大概有3-5年的样子,希望国内企业能够加紧赶上,毕竟一旦市场被StarLink完全占据,后面追赶就会比较困难。

### 关于低轨卫星通信导航一体化仿真平台 #### 软件架构 对于低轨卫星通信导航一体化仿真平台而言,在软件架构方面,一种有效的方案是采用基于微服务的6G空天地一体化新型网络架构。此架构通过Mininet+Python+STK这一组合来实现[^3]。具体来说: - **Mininet**:作为一款基于SDN(Software Defined Networking)的轻量化进程虚拟化网络仿真平台,它由Python语言开发而成,具备与Python环境无缝对接的能力,主要用于执行主程序逻辑。 - **STK (Satellite Tool Kit)**:这是一款专为航天领域打造的商业分析工具,擅长模拟真实的卫星星座运动轨迹及其动态变化情况。 这种架构不仅考虑到了开发过程中的复杂度控制、代码的跨平台迁移便利性以及源码结构清晰易懂等问题;而且借助STK强大的天体物理建模能力,可以精确再现低地球轨道内的卫星分布状况,进而服务于更高层次的应用需求。 ```python import mininet.node from stkmgr import STKManager # 假设这是用于管理STK接口的一个模块 def setup_simulation_environment(): """设置仿真的基本环境""" # 初始化Mininet节点配置... switch = mininet.node.Switch() # 同步并启动STK仿真器实例... stk_instance = STKManager.start_satellite_simulation() setup_simulation_environment() ``` #### 平台功能 该类仿真平台的核心功能在于支持对低轨卫星所承载的不同类型载荷——特别是通讯与导航两大核心业务之间相互作用关系的研究。一方面,可以通过引入先进的信号处理机制如OTFS(Orthogonal Time Frequency Space),使得在同一套硬件设施之上同时完成高质量的数据输任务精准的位置测定工作成为可能[^2];另一方面,则允许科研人员探索如何优化这些设备之间的协作方式以达到最佳性能表现的目的。 此外,此类平台还提供了丰富的API接口供外部开发者调用,以便他们可以根据实际项目特点定制个性化的测试案例集,加速新技术验证周期的同时也促进了行业内知识共享技术交流活动的发展。 #### 应用场景 这类仿真平台广泛应用于多个重要领域之中,包括但不限于以下几个方面: - **民用航空安全监控**:通过对飞行路径规划算法的有效性评估提高航班调度效率; - **灾害应急响应协调指挥**:当自然灾害发生时快速部署临时性的宽带接入点保障救援队伍间的信息互通无阻; - **智慧城市基础设施建设**:助力城市管理者更好地理解物联网感器布局策略背后的影响因素从而做出更加明智的投资决策。 #### 研究方向 围绕着低轨卫星通导一体系统展开深入探究的方向众多,其中几个值得关注的重点如下: - 探讨不同频率波段下信道特性差异给整体链路质量带来的影响规律; - 针对未来可能出现的大规模MIMO(Massive Multiple Input Multiple Output)阵列应用场景提前做好理论准备; - 结合人工智能方法论改进现有资源分配模型使之更贴合现实世界中复杂的电磁干扰环境特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值