参照:https://www.cnblogs.com/mfryf/p/11393669.html
Gird Search.
优点是实现简单暴力,如果能全部遍历的话,结果比较可靠。
缺点费时间。
Random Search
Bengio在Random Search for Hyper-Parameter Optimization中指出,Random Search比Gird Search更有效。实际操作的时候,一般也是先用Gird Search的方法,得到所有候选参数,然后每次从中随机选择进行训练。
Bayesian Optimization.
贝叶斯调参的Python库,可以上手即用:
jaberg/hyperopt, 比较简单。
fmfn/BayesianOptimization, 比较复杂,支持并行调参。
几种调参方法的对比
最新推荐文章于 2024-04-02 12:03:57 发布