【数学】定积分计算

1.定义

i f lim ⁡ x → λ ∑ i = 1 n f ( ξ i ) △ x i ∃ , 则 f ( x ) 在 [ a , b ] 上 可 积 if \lim_{x \to \lambda} \sum_{i=1}^n f(\xi_i)△x_i \exists,则 f(x)在[a,b]上可积 ifxλlimi=1nf(ξi)xif(x)[a,b]
定积分与上下限、函数关系有关,与积分变量无关。

2.定理与性质

2.1积分上限函数

由于凭借定义计算定积分太过困难,所以人们研究出来积分上限函数
设 f ( x ) ∈ C [ a , b ] , 令 Φ ( x ) = ∫ a x f ( t ) d t , 则 Φ ′ ( x ) = f ( x ) 设 f(x) \in C[a,b],令 \Phi(x)=\int_{a}^{x}f(t)dt,则\Phi^{'}(x)=f(x) f(x)C[a,b],Φ(x)=axf(t)dt,Φ(x)=f(x)
ps:C[a,b]表示在a,b区间连续
该定理的证明需要使用到积分中值定理
该定理告诉我们:
f ( x ) ∈ C [ a , b ] , 则 他 的 积 分 上 限 函 数 ( 变 上 限 积 分 ) 是 f ( x ) 的 一 个 原 函 数 f(x) \in C[a,b],则他的积分上限函数(变上限积分)是f(x)的一个原函数 f(x)C[a,b]()f(x)
所以说,连续函数一定有原函数,至少他的积分上限函数就是他的一个原函数
同时由此可证明著名的牛顿—莱布利兹公式

2.2积分中值定理

设 f ( x ) ∈ C [ a , b ] , 则 存 在 ξ ∈ [ a , b ] , 使 得 设f(x)\in C[a,b],则存在\xi \in[a,b],使得 f(x)C[a,b],ξ[a,b],使
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_{a}^bf(x)dx=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

2.3其它性质与定理

① 上 下 限 对 调 , 积 分 取 反 。 当 a < b 时 , ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x ①上下限对调,积分取反。当a<b时,\int_a^bf(x)dx=-\int_b^af(x)dx a<babf(x)dx=baf(x)dx
② 积 分 对 区 间 的 可 加 性 。 f ( x ) 可 积 , 则 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x ②积分对区间的可加性。f(x)可积,则\int_a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx f(x)abf(x)dx=acf(x)dx+cbf(x)dx
f(x)在[-a,a]上连续,则 ∫ − a a f ( x )   d x = ∫ 0 a [ f ( x ) + f ( − x ) ]   d x \int_{-a}^{a} f(x)\,dx=\int_{0}^{a} [f(x)+f(-x)]\,dx aaf(x)dx=0a[f(x)+f(x)]dx

3.做题技巧、题型

在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值