GYM雅达利打砖块环境安装

前情提要

又装了一整天的环境,一开始装gym环境只用了

pip install gym

但是这个命令只能安装一些基础的游戏环境
自带就有一些基本的小游戏(或者称之为环境),包括classical control,box2d,mujoco,toytext等类别的一些小游戏,具体游戏名可以去…\Lib\site-packages\gym\envs下相应的文件夹下查看,或者去…\Lib\site-packages\gym\envs\registration.py文件内查看

我要使用的“BreakoutNoFrameskip-v4”打砖块环境并不在,然后为了安装还出了还出现了很多的bug,改来改去bug越来越多,还发现自己之前手贱删了一些dll链接文件,导致包之间的依赖关系被破坏。
如果你安装失败并且尝试了很多方法依然不成功,那么可以用我下面的方法来安装。

卸载之前安装的GYM

pip uninstall atari-py
pip uninstall gym[atari]

下载 VS build tools

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16

运行 VS build tools并安装以下工具

在这里插入图片描述

重启电脑

根据安装提示重启电脑

安装cmake, atari-py 和 gym

pip install cmake
pip install atari-py
pip install gym[atari]

测试

import atari_py
print(atari_py.list_games())

输出结果:
[‘adventure’, ‘air_raid’, ‘alien’, ‘amidar’, ‘assault’, ‘asterix’, ‘asteroids’, ‘atlantis’, ‘bank_heist’, ‘battle_zone’, ‘beam_rider’, ‘berzerk’, ‘bowling’, ‘boxing’, ‘breakout’, ‘carnival’, ‘centipede’, ‘chopper_command’, ‘crazy_climber’, ‘defender’, ‘demon_attack’, ‘double_dunk’, ‘elevator_action’, ‘enduro’, ‘fishing_derby’, ‘freeway’, ‘frostbite’, ‘gopher’, ‘gravitar’, ‘hero’, ‘ice_hockey’, ‘jamesbond’, ‘journey_escape’, ‘kaboom’, ‘kangaroo’, ‘krull’, ‘kung_fu_master’, ‘montezuma_revenge’, ‘ms_pacman’, ‘name_this_game’, ‘phoenix’, ‘pitfall’, ‘pong’, ‘pooyan’, ‘private_eye’, ‘qbert’, ‘riverraid’, ‘road_runner’, ‘robotank’, ‘seaquest’, ‘skiing’, ‘solaris’, ‘space_invaders’, ‘star_gunner’, ‘tennis’, ‘time_pilot’, ‘tutankham’, ‘up_n_down’, ‘venture’, ‘video_pinball’, ‘wizard_of_wor’, ‘yars_revenge’, ‘zaxxon’]

若问题还没得到解决

可能是你的gym和atari版本有问题,回退到之前的版本

pip install gym==0.19.0
pip install atari_py==0.2.6

以上,问题得到解决。

### 安装Isaac Gym环境 为了在本地环境中设置Isaac Gym用于机器人模拟,需遵循特定的安装指南。NVIDIA官方提供了详细的文档来指导用户完成这一过程[^1]。 #### 系统需求 确保计算机满足最低硬件配置要求,特别是配备兼容的NVIDIA GPU设备和支持CUDA技术的驱动程序版本。操作系统建议采用Linux发行版,因为大多数深度学习框架在此类平台上表现更佳。 #### 软件依赖项准备 - **Python**: 推荐使用Anaconda管理虚拟环境,并创建一个新的Conda环境专门用于此项目。 - **PyTorch**: 需要预先安装好支持GPU加速的PyTorch库,这可以通过pip命令轻松实现。 ```bash conda create -n isaacgym python=3.8 conda activate isaacgym pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` #### 下载与编译源码 访问[NVIDIA IsaacGym GitHub仓库](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs),克隆最新稳定分支至本地文件夹内: ```bash git clone --recursive https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.git cd IsaacGymEnvs ``` 按照README.md中的指示执行构建脚本以生成必要的二进制文件: ```bash ./build.sh ``` #### 运行测试案例验证安装成功与否 一旦所有组件都已正确部署完毕,则可通过启动几个内置示例场景来进行初步的功能检测: ```python from omni.isaac.gym.vec_env import VecEnvBase import os.path as osp env = VecEnvBase(headless=True, sim_device="cuda:0", graphics_device_id=0) task_name = "AllegroHand" task_class = eval(task_name) env.load_task(task_class()) obs = env.reset() print(f"Observation space shape {obs.shape}") ``` 通过以上步骤能够顺利完成Isaac Gym环境搭建工作,在此基础上即可开展基于强化学习算法的各种实验研究活动。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值