《视觉SLAM十四讲 第二版》笔记及课后习题(第十四讲)

本文是《视觉SLAM十四讲 第二版》的读书笔记,探讨了当前的开源SLAM解决方案,如视觉+惯导SLAM和语义SLAM,并指出SLAM未来将朝着轻量化和高精度重建方向发展。同时,提供了课后习题,鼓励读者实践和深入研究SLAM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

读书笔记:SLAM:现在与未来

终于到本书最后一章了。也到了此系列博客的最后一篇! 我们前面的内容介绍了一个SLAM 系统中的各个模块的工作原理,这是研究者们多年的工作的结晶。目前,除了这些理论框架之外,我们也积累了许多优秀的开源SLAM 方案。不过,由于它们大部分实现都比较复杂,不适合初学者做为上手的材料,所以我们放到了本书的最后加以介绍。相信读者通过阅读之前的章节,应该能明白它们的基本原理。

当前的开源方案

方案名称 传感器形式 地址
MonoSLAM 单目 https://github.com/hanmekim/SceneLib2
PTAM 单目 http://www.robots.ox.ac.uk/~gk/PTAM/
ORB-SLAM 单目为主 http://webdiis.unizar.es/~raulmur/orbslam/
LSD-SLAM 单目为主 http://vision.in.tum.de/research/vslam/lsdslam
SVO 单目 https://github.com/uzh-rpg/rpg_svo
DTAM RGB-D https://github.com/anuranbaka/OpenDTAM
DVO RGB-D https://github.com/tum-vision/dvo_slam</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值