拉格朗日乘子法(Lagrangian Multiplier Method)和KKT条件

本文深入解析了优化问题中KKT条件的应用,详细介绍了在存在等式和不等式约束条件下,如何通过拉格朗日函数求解最优解。文章涵盖了拉格朗日函数的构建、KKT条件的构成及其意义,是理解有约束优化问题的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设目标函数f(x),不等式约束约束为g(x),等式约束为h(x),那么可以将优化问题描述如下
min ⁡ f ( X ) s . t . h j ( X ) = 0 j = 1 , 2 , . . . , p g k ( X ) ≤ 0 k = 1 , 2 , . . . q \begin{aligned} \min \quad&f(X)\\ s.t. \quad&h_j(X)=0\quad j=1,2,...,p\\ &g_k(X)\le 0 \quad k=1,2,...q\\ \end{aligned} mins.t.f(X)hj(X)=0j=1,2,...,pgk(X)0k=1,2,...q
我们定义不等式约束下的拉格朗日函数L,则L的表达式为
L ( X , λ , μ ) = f ( X ) + ∑ j = 1 p λ j h j ( X ) + ∑ k = 1 q μ k g k ( X ) L(X, \lambda, \mu)=f(X)+\sum\limits_{j=1}^{p}{\lambda_jh_j(X)}+\sum\limits_{k=1}^q{\mu_k\mathrm{g}_k(X)} L(X,λ,μ)=f(X)+j=1pλjhj(X)+k=1qμkgk(X)
对于有约束的情况下能取到极值点的地方可能有两种情况:

  1. 在h(x) 和 等值线相切的地方
  2. f(x) 的极值点本身就在可行域里面。
    两种情况
    若要求解上述优化问题,必须满足下述的条件,即求解条件:
    ∂ L ∂ x ∣ X = X ∗ = 0 λ j ≠ 0 μ k ≥ 0 μ k g k ( X ∗ ) = 0 h j ( X ∗ ) = 0 j = 1 , 2 , . . . , p g k ( X ∗ ) ≤ 0 k = 1 , 2 , . . . q \begin{aligned} &\frac{\partial L}{\partial x}\bigg|_{X=X^*}=0\\ &\lambda_j\neq0\\ &\mu_k\geq0\\ &\mu_kg_k(X^*)=0\\ &h_j(X^*)=0 \quad j=1,2,...,p\\ &g_k(X^*)\leq0 \quad k=1,2,...q \end{aligned} xLX=X=0λj=0μk0μkgk(X)=0hj(X)=0j=1,2,...,pgk(X)0k=1,2,...q
    这些求解条件就是KKT条件。
    (1)是对拉朗格朗日函数取极值时的必要条件
    (2)是拉格朗日系数等式约束
    (3)是拉格朗日系数不等式约束
    (4)是互补松弛条件
    (5)(6)原约束条件

增广拉格朗日见我另一个博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值