白鹭群优化算法(Egret Swarm Optimization Algorithm)

白鹭群优化算法(Egret Swarm Optimization Algorithm)受雪白鹭和大白鹭捕食行为启发,结合坐等和激进策略。算法包括坐等策略的白鹭A、随机游走的白鹭B和包围策略的白鹭C。通过实验验证,与5种先进优化算法对比,展示其在模型自由优化中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎加入一同交流,QQ群:916165264

白鹭群优化算法(Egret Swarm Optimization Algorithm)是一种结合了雪白鹭(坐等策略,Sit-And-Wait Strategy)和大白鹭(激进策略,Aggressive Strategy)捕食行为的启发式算法。

生物启发

在鹭科生物中,雪白鹭(Snowy Egret)和大白鹭(Great Egret)是两类在捕食行为上差异比较大的物种。雪白鹭采用的是能耗最低的坐等策略:站立不动,耐心等待,静静观察猎物的行踪,直到猎物出现便飞快地用鸟喙攫食。采用坐等策略的雪白鹭往往能够以很低的能量消耗,获取较为稳定的收益。而大白鹭则采取激进策略,一旦发现了猎物后,就会一直追赶,直到捕获。激进策略虽然能量消耗大,但是也使得大白鹭有可能获得更高的收益。受到雪白鹭和大白鹭捕食行为的启发,提出了融合两者优势特性的白鹭群优化算法。

算法描述

白鹭群优化算法由三个主要部分组成:坐等策略、激进策略和判别条件。每个白鹭群可以由 n 支白鹭小队组成,每支白鹭小队又包含三只白鹭,其中白鹭A实行坐等策略,白鹭B和白鹭C分别采用激进策略中的随机游走和包围机制。

坐等策略(白鹭A)

第i个白鹭A的观测方程可以描述为 \hat{y}_i = A(\mathbf{x}_i) ,每次迭代获取到的真实适应度 y_i,可以求得观测方程中权重的伪梯度 \mathbf{g}_i,于是白鹭A的更新位置表示如下,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值