欢迎加入一同交流,QQ群:916165264
白鹭群优化算法(Egret Swarm Optimization Algorithm)是一种结合了雪白鹭(坐等策略,Sit-And-Wait Strategy)和大白鹭(激进策略,Aggressive Strategy)捕食行为的启发式算法。
生物启发
在鹭科生物中,雪白鹭(Snowy Egret)和大白鹭(Great Egret)是两类在捕食行为上差异比较大的物种。雪白鹭采用的是能耗最低的坐等策略:站立不动,耐心等待,静静观察猎物的行踪,直到猎物出现便飞快地用鸟喙攫食。采用坐等策略的雪白鹭往往能够以很低的能量消耗,获取较为稳定的收益。而大白鹭则采取激进策略,一旦发现了猎物后,就会一直追赶,直到捕获。激进策略虽然能量消耗大,但是也使得大白鹭有可能获得更高的收益。受到雪白鹭和大白鹭捕食行为的启发,提出了融合两者优势特性的白鹭群优化算法。
算法描述
白鹭群优化算法由三个主要部分组成:坐等策略、激进策略和判别条件。每个白鹭群可以由 n 支白鹭小队组成,每支白鹭小队又包含三只白鹭,其中白鹭A实行坐等策略,白鹭B和白鹭C分别采用激进策略中的随机游走和包围机制。
坐等策略(白鹭A)
第i个白鹭A的观测方程可以描述为 ,每次迭代获取到的真实适应度
,可以求得观测方程中权重的伪梯度
,于是白鹭A的更新位置表示如下,